CIRCULATING COPY Sea Grant Depository

LINKAGES BETWEEN THE ECONOMY AND THE ENVIRONMENT OF THE COASTAL ZONE OF MISSISSIPPI

PART II: ENVIRONMENTAL MODEL

INTERIM TECHNICAL REPORT JUNE 1979

Bureau of Business Research University of Southern Mississippi Hattiesburg, Mississippi 39401

MISSISSIPPI-ALABAMA SEA GRANT PROGRAM

MASGP - 78 - 041

LINKAGES BETWEEN THE ECONOMY AND THE ENVIRONMENT OF THE COASTAL ZONE OF MISSISSIPPI

í

PART II: ENVIRONMENTAL MODEL

Prepared Under A Mississippi-Alabama Sea Grant Consortium Research Grant

by

Edward Nissan, Ph.D. D. C. Williams, Jr., Ph.D. Trellis Green, M.S.

Bureau of Business Research College of Business Administration University of Southern Mississippi Hattiesburg, Mississippi 39401

June, 1979

This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce under grant #04-8-M01-92. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon.

MASGP - 78-041

ACKNOWLEDGEMENTS

The work upon which this report was based was financed in part by funds provided by the Mississippi-Alabama Sea Grant Consortium. The completion of this report is attributable to the valuable assistance rendered by many individuals, businesses, and governmental agencies. A special debt of gratitude is owed to Mr. Caleb Dana, Mr. Earl Le Master, Mr. Wayne Anderson and Mr. Bill Barnett of the Mississippi Air and Water Pollution Control Commission who helped in providing data, as well as advice and guidance. Special appreciation goes to Dr. Richard Pierce of the USM Biology Department and to consulting engineer, Mr. Lloyd Compton, who assisted in technical and engineering aspects. Dr. Robert Martin of Mississippi State University proved invaluable for agricultural advice and Mr. Leland Speed and Ms. Annette Cadwell of the State and National Restaurant Association, respectively, helped overcome serious data problems. Helpful advice concerning regional economic structure was provided by Mr. David Veal of the Mississippi Cooperative Extension Service, Mr. Chick Anderson of the Gulfport R & D Center, and Mr. John Howie of the Mississippi Employment Service in Gulfport. Numerous city officials and engineers of coastal waste treatment plants contributed beneficial field data and advice. Graduate students Hiram Durant and Jeannie Thames contributed many man-hours processing data. Finally, the authors are indebted to Ms. Sarah Curry who perservered in translating the rough draft into the finished product.

Any errors of fact, logic, or judgement remaining in the report are the responsibility of the authors.

iii

TABLE OF CONTENTS

Page ACKNOWLEDGEMENTS
LIST OF TABLES
INTRODUCTION
TYPES OF POLLUTANTS AND THEIR POTENTIAL EFFECT ON THE ENVIRONMENT 3
Water
METHODOLOGIES FOR ESTIMATING PHYSICAL QUANTITIES OF POLLUTANTS MISSISSIPPI COASTAL REGION
Water Effluents
Industrial Water Effluents
Air Emissions
Household Category
Solid Waste
THE ENVIRONMENTAL MODEL - MISSISSIPPI COASTAL REGION
EVALUATION OF THE MODEL
APPENDICES
Appendix A (Estimation of Sector Outputs Mississippi Coastal Region)
BIBLIOGRAPHY

LIST OF TABLES

Section -	Table	Page
III	I	Percent Coverage of MAWPCC Regional Sample Industrial Classification Sectors Mississippi Coastal Region 1977
III	2	Selected Estimated Water Consumption At Commercial Establishments Medium Concentrations
III	3	Typical Effluent Composition of Domestic Sewage Selected Values
III	4	Approximate Solid Waste Generation Rates Selected Categories
III	5	Average Solid Waste Collected Selected Categories
IV]	Physical Quantities of Water Effluents, Air Pollution and Solid Waste Mississippi Coastal Region 1977
IV	2	Ranking of Physical Quantities of Pollution Category by Sector Mississippi Coastal Region 1977
IV	3	Quantities of Pollutants Per \$10,000 Output Mississippi Coastal Region 1977 37
IV	4	Ranking of Pollutant Quantities Per \$10,000 Output Category by Sector Mississippi Coastal Region 1977 40
IV	5	Percent of Total Pollutants Attributable to the Top Five Sectors by Pollutant Category Mississippi Coastal Region 1977 42

۷

-

I. INTRODUCTION

This report is the middle link of three projects. The earlier part was published in March 1978 and was entitled "Linkages Between the Economy and the Environment of the Coastal Zone of Mississippi, Part I: Input-Output Model" [38]. The study was built primarily around techniques developed by Leontief [18], Carter [6] and Isard [15]. The third project will appear subsequent to this one in a year hence.

The motivation for this three year study is to supply an empirical investigation into the mutual impacts of economic activity and the environment in the coastal region of Mississippi. Such a study requires a considerable amount of data, both economic and environmental.

The economic data were furnished in the earlier report in the form of input-output tables. There the economic activity of the region was divided into 29 endogenous sectors, each producing output to be absorbed by the others and in return absorbing as inputs products produced by the other sectors. It is a fairly convenient approach to display the overall economic activity in an accounting framework.

The non-economic data, the environmental, are by far more difficult to obtain than the economic counterpart. In this report methods, sources and estimates of the magnitudes of non-economic data will be presented.

In order to estimate physical quantities of pollutants in the Mississippi coastal region, primary data published by the Mississippi Air and Water Pollution Control Commission (MAWPCC) were used when possible. However, it was necessary in many instances to rely on secondary sources either from similar studies or from published findings of the Environmental Protection Agency (EPA). At times, reliance was strictly based upon estimation techniques obtained from engineering and scientific publications.

The primary endeavor was to allocate physical volumes of pollutants to the proper economic sectors as categorized by the Input-Output study [38]. Such allocation required a great deal of effort to systemize and analyze diverse aggregate data. In what follows, a schematic outline of the methods and procedures undertaken is discussed in detail. The analysis is focused on the three main categories of pollutants, which are:

A. Water Effluents
B. Air Pollution
C. Solid Wastes

Ļ

The third phase of the study which is the linkage between the economy and the environment will follow techniques adopted by Isard [14] and many others in the area of regional economics.

It is necessary to point out that in order to conform the economic data which are for the year 1972 with the environmental data which are for the year 1977, it was necessary to update the economic data. This was done in order to compute values of pollutants per unit of sales as shown in Section IV.

II. TYPES OF POLLUTANTS AND THEIR POTENTIAL EFFECT ON THE ENVIRONMENT

Many different types of pollutants are discharged into the ecosystem as waste by-products of economic activity. These waste residues are frequently wholly or partially untreated for their harmful effects. Utimately diffused into water, air, and land, the qualitative impact upon human and animal life, as well as non-living inputs to the economic system, will be born largely by future generations. However, recent experiences with hazardous wastes suggest that proliferation of waste residues has already begun to adversely affect living and non-living resources. This section outlines the types and effects of pollutants found in water, air, and land regions of the Mississippi Coastal Zone.

It is important to propose a useful definition of waste for this particular study. In a study of a similar type in the state of Washington [9], waste was defined after posing the following questions:

When is a material a waste and when is it a by-product? It was decided that if a "waste" material from an industry's main production process is recovered and made into some product in a plant, then this is a by-product. Also, if some material is rejected from the process, but is returned to the process as a new material, then it also is not a waste. However, if a material is rejected from a firm's process and it then is shipped off the premises for disposal or for use or recovery by another firm, this material is deemed a waste product.

This is a broad definition of waste and is perhaps inconsistent with the purpose of this study. It was then decided that waste be defined as the residual disposed into the environment after being treated at a waste treatment facility. That is, if part of the original waste has been treated and

deemed unharmful to the environment, it will not be considered as part of the waste residual inventory.

Pollutants in this study can be classified into water effluents, air emissions, and solid waste. What follows is a brief outline and discussic of the major types encountered.

Water Pollution

Specialists in this area categorize water pollutants as chemical, physical, biological and physiological. Water pollutants considered in the study are:

Waste Water PH (Abnormal) Temperature (Elevated) Chlorine Nitrogen Sulfides Flouride Phosphate	Heavy Metals Zinc Cadmium Iron Chromium Aluminum Copper Nickel Lead	Fecal Coliform BOD (Abnormal) COD (Abnormal) Suspended Solids Settleable Solids Oil and Grease Phenols Organic Carbon
---	---	--

Benarde [3] gives a lucid description of the chemical, physical, biological and physiological water pollution as follows:

The chemical pollutants include both inorganic and organic compounds, such as dairy, textile, cannery, brewery, and paper-mill wastes, ensilage, laundry wastes, manure, and slaughterhouse wastes. These essentially contain proteins, carbohydrates, fats, oils, resins, tars and soaps. If the pollutants are not excessive, they will be stabilized by the self-purification process. If they are excessive, death of fish and offensive odors can result. In addition, such plant nutrients as phosphates, nitrates, and potassium have the ability to aid weed growth and promote algae blooms which further deplete oxygen. Inorganic salts, particularly toxic heavy metals not removed by the standard sewage-treatment process, can produce water unsuitable for industry, irrigation, and drinking.

Biological pollutants include the many types of microscopic animal and plant forms, such as bacteria, protozoa, and viruses that are associated with disease transmission. These come from domestic sewage, farms, and tanneries.

Physiological pollution manifests itself as objectionable tastes and odors. These may be imparted to the flesh of fish, making them inedible, or water itself may become unfit to drink owing to its odor and taste. Odors and tastes occur in water as a consequence of the presence of inorganic chemicals, and as hydrogen sulfide, or the extensive growth of certain species of algae. Some impart musty odors, while others give fishy, pigpen, spicy, or chemical tastes to it.

Various physical effects, such as foaming, color, turbidity, and increased temperature are also considered forms of pollution.

Elevated temperature also plays a part in water pollution. Water from a nearby stream or river is pumped into a plant to cool a machine or process that normally generates heat. The transfer of heat to the cooling water raises its temperature several degrees. When this heated water is discharged back into the stream or river whence it came, it can disrupt ecological relationships within it. A rise in temperature of only a few degrees can be lethal to a variety of aquatic plant and animal forms, which, like most living things, are sustained only within a narrow temperature range. The death of certain species removes the food supply of species which prey on them; without this food supply they in turn will die or be forced to move downstream. Furthermore, the warmer the water, the less oxygen it will contain; oxygen, as has been pointed out, is vital for the prevention of deterioration. At elevated temperatures all chemical and biological activity proceeds at a more rapid rate than would normally prevail, and this in turn depletes the sensitive oxygen balance of the stream. This series of events can result in the loss of self-purification capacity by altering the stream community.

Air Pollution

ł

In this study, air pollutants considered are:

Nitrogen oxide	Particulates
Sulfur oxides	Aldehydes
Carbon Monoxide	Hydrocarbons

By weight, these substances account for the major discharges of air pollution. In the United States carbon monoxide represents about half, followed by sulfur oxides and hydrocarbons, with particulates and nitrogen oxides representing smaller amounts[22].

Mills [22] gives a description of the major airborne discharges as follows:

Particulates: are small pieces of materials discharged to the air by burning fuel, and by industrial processes. When fuel is burned, small pieces of unburned material pass to the atmosphere. Large particulate discharges result from the burning of a ton of coal or wood, whereas petroleum products and, especially, natural gas generate only small amounts of particulates per ton. Any coal-fired combustion system, whether for space heating or thermal electric generation, discharges particulates. Diesel engines in large trucks, buses, and some cars discharge small amounts of particulates, but internal-combustion engines discharge almost none. After discharge to the atmosphere, particulates disperse according to the wind pattern. Eventually, they fall to earth, mostly within a few miles of the point of discharge. Particulates vary greatly in size, which strongly effect their dispersion, the speed with which they settle out of the atmosphere, and the harm they do to people and property.

- Sulfur oxides: most sulfur in the air over urban areas results from human activities, particularly the burning of coal and oil, but also from a variety of industrial processes, especially smelting and refining. Some kinds of coal and oil contain much more sulfur than others. All the sulfur in the fuel at the time of combustion is released during combustion and enters the atmosphere unless captured beforehand. Sulfur oxidizes in the atmosphere and most washes back to earth as dilute sulfuric acid during precipitation. Heating oil used for space heating is a major source of sulfur discharges, as is the heavy oil used in thermal electric generation and in large spaceheating units in apartment houses and other large buildings.
- Carbon Monoxide: virtually all the carbon monoxide in the atmosphere is discharged by human activities. Most results from burning gasoline in internalcombustion engines, but some results from many industrial processes. Carbon monoxide results from incomplete combustion in internal-combustion engines, and less is discharged the more complete the combustion. Carbon monoxide is an apparently inert gast in the atmosphere; it does not react with other substances there. Yet much of the massive discharge of carbon monoxide in metropolitarn areas disappears within a few hours, at a rate apparently not explainable by the circulation of air. It is still something of a mystery what happens to it.

Hydrocarbons: they are discharged from the combustion of fossil fuels, from industrial processes, and from a variety of miscellaneous sources. Among the later are evaporation of industrial solvents and the wearing of motor vehicle tires from driving. Like carbon monoxide, hydrocarbons are the products of incomplete combustion in internal-combustion engines, the largest single source of hydrocarbons. Important natural processes also discharge hydrocarbons, and in much larger quantities than human activities on a worldwide basis. As with sulfur oxides, human activities account for most hydrocarbons in the atmosphere over urban areas. Hydrocarbons are reactive in the atmosphere. Along with nitrogen oxides, they result in the formation of photochemical smog in appropriate climatic

Nitrogen oxides: they are naturally present in the atmosphere in large volumes. Most nitrogen discharges from human activity are converted to nitrogen dioxide, but human activity accounts for only a minor part of all atmospheric nitrogen dioxide. Virtually all nitrogen discharges from human activity result from combustion of fossil fuels in motor vehicles, space heating systems, and thermal electric plants. Whereas carbon monoxide and hydrocarbons are the products of incomplete combustion, nitrogen oxides are the natural products of combustion. Therefore, procedures to improve the efficiency of combustion reduce carbon monoxide and hydrocarbon discharges, but increase nitrogen oxide discharges. In the atmosphere, nitrogen dioxide is an ingredient in the formation of photochemical smog. Photochemical reactions take place within a few hours of discharge. Nitrogen dioxide that does not take part in photochemical reactions is removed from the atmosphere as aerosols by settling onto the earth and by rain, mostly within three days of discharge.

Solid Waste

Solid wastes include rubbish, refuse, garbage and others. The American Public Works Association [3] classifies these as follows:

- Rubbish: Includes combustible items, such as cartons, boxes, paper, grass, plastics, bedding and clothing and non-combustibles, such as ashes, cans, crockery, metal furniture, glass, and bathtubs.
- Garbage: Waste resulting from growing, preparing, cooking, and serving food. Included in this category are market wastes. Together they account for approximately 10 percent of the volume of solid waste collected[3].

Refuse: The term has been used to denote all types of waste.

7

conditions.

Other types of waste include demolition waste such as bricks, masonry, piping, and lumber and sewage-treatment residue such as septictank sludge and solids from the coarse screening of domestic sewage.

For more information regarding water and air pollution and solid waste, the reader is referred to Bell [2], Benarde [3], Dolan [10], Mills [22], and Zwick and Benstock [53].

III. METHODOLOGIES FOR ESTIMATING PHYSICAL QUANTITIES OF POLLUTANTS MISSISSIPPI COASTAL REGION

A. Water Effluents

Water effluent loadings were derived basically from 1977 waste water treatment facility printouts provided by the Mississippi Air and Water Pollution Control Commission (MAWPCC) [23]. For estimation purposes the 30 endogenous and exogenous sectors of the updated input-output model were divided into the four categories listed below to conform with printout classifications and effluent type. The data were the primary source for all categories except Agriculture. To estimate household and commercial water wastes, the use of secondary data was necessary.

> Water Effluent Categories Effluent Type and Data Sources Mississippi Coastal Region

Category	Sector	Major Effluent Type	Source(s)
Agricultural	1-5	Irrigation	U.S. Census of Agriculture
Industrial	6-17; 20	Industrial Process Waste	MAWPCC
Commercial	18-19; 21-29	Waste Water Sewage	MAWPCC & Secondary
Households	30	Waste Water Sewage	MAWPCC & Secondary

A waste water treatment facility is classified as industrial, municipal, or private. The industrial facilities, also called "package

plants," process waste water from specific firms which hold state permits. Under 1977 permit stipulations, effluents produced by firms as consequences of their production processes were identified and monitored periodically at "discharge points" to determine compliance with the standards. However, some manufacturers utilize city facilities which are neither municipal nor private and as such are not monitored. This is a particular problem for large, privately-owned industrial parks. Thus, it was necessary to provide estimating procedures of water effluents for such firms. The municipal and private facilities, on the other hand, process waste water sewage of commercial establishments, shopping centers, apartment complexes, schools, and private households. A few monitored municipal facilities, however, do receive wastes from manufacturing firms, usually because of geographical proximity. Such instances required a knowledge of specific loadings by the firm since facilities rather than firms usually hold the necessary permits.

Industrial Water Effluents

Factory printouts for manufacturing firms in the Mississippi coastal region were classified by product into SIC categories corresponding to their respective input-output sector groupings, a sector being one or more industries [29]. Three sectors not conventionally classified as manufacturing --Mining, Construction, and Communications/Public Utilities-- were included with manufacturing simply because they were monitored in the same fashion.

The level of information obtained from the printouts for each firm in the coastal region was gathered as illustrated in the following to yield net estimates of effluent weights in pounds and million gallons of waste water entering the environment after treatment. In addition, data on PH and temperature were recorded. Monthly sample observations per discharge point in units of weight (pounds) or concentration (milligrams per liter)

were converted to yearly estimates, assuming a 300 day industrial year [39]. Sample data were published as a range from minimum to maximum with the average reading taken where possible [8]. The weights in pounds were obtained directly as daily averages and were then converted to an annual basis. Measurements that were given as milligrams per liter (MG/L) required an indirect conversion to pounds by the following formula for a given effluent and firm:

(1) Pounds/day = MG/L x 8.34 x Flow Rate
where:
 MG/L = Milligrams per liter
 8.34 = Conversion factor
 Flow Rate = Million gallons water per day

The technique followed is illustrated by the following example for a hypothetical firm A. Assume that the BOD discharge is given in pounds and suspended solids are recorded as 29.98 MG/L for all months at the discharge point. Further assume that only three months are sampled for this hypothetical firm. Biological oxygen demand (BOD) and flow rate (waste water) are averaged and converted to yield 33,000 pounds and 150 million gallons per year, respectively as follows:

$$\left(\frac{100 + 110 + 120}{3}\right)$$
 lbs. x 300 days = 33,000 lbs./year

and

$$\left(\frac{.5 + .4 + .6}{3}\right)$$
 MGY x 300 days = 150 MGY.

To convert suspended solid concentration to pounds, Equation 1 is applied to 29.98 MG/L and each corresponding flow rate to yield an average of 125 pounds per day as shown in the computations below. The daily average is then converted to an annual quantity of 37,500 pounds.

Suspended solids =
$$(29.98)$$
 (8.34) $(.5)$ + (29.98) (8.34) $(.4)$
+ (29.98) (8.34) $(.6)$
Total per day = 125 + 100 + 150 = 375
Average per day = $375 \div 3 = 125$

and hence,

The total is $125 \times 300 = 37,500$ lbs.

Hypothetical Firm Worksheet Water Effluents

Firm A

Water Effluent		Mon	th				Average Per	
and Other:		2	<u> </u>	· -	•	12	Day	Year
BOD-5 day (1bs)	100.00	110.00				120.00	110 lbs.	33,000 lbs.
Sus. Solids (MG/L)	29.98	29.98		•		29.98	125 lbs.	37,500 lbs.
рн	7.00	6.00		•		8.00	7 SU	7 SU*
Flow Rate (MGD)	.50	.40	•	•	•	,6 0	.5 MGD	150 MGY

*SU = Scientific units

If a firm had more than one discharge point, all discharge points were summed to give total firm loadings. Total firm outputs of water effluents were then compiled on sector worksheets such as shown in the following figure. For example, BOD discharges by Firm A added to all other firms in Sector 1 total 183,000 pounds.

Hypothetical Sector Worksheet Water Effluents Sector 1

Firm	Employment	BOD (1bs)	Suspended Solids (1bs)	PH(SU)*	Flow Rate (MGY)
A	50	33,000	37,500	7	150
В	100	60 ,0 00	60,000	6	100
С	150	100,000	80,000	8	150
Total	<u>300</u> Scientific u	183,000	170,000	7	300

For manufacturing firms which dump their wastes into monitored municipal facilities rather than their own it was necessary to identify and allocate their proper effluent loadings from the total commercial and household wastes of the facility. The resulting effluent quantities were then entered on manufacturing worksheets and processed as if monitored separately. Facility worksheets then consisted of purely non-manufacturing wastes, that is, commercial and household. This procedure was particularly essential in the Food Processing sector, requiring primary data collected in the field.

Many data problems were encountered when processing the printouts, often necessitating less than optimal solutions. Missing or incomplete data were handled in a variety of ways. For example, many firms with a permit printout had no effluent sample results but did list maximum allowable permit conditions. Unpublished data provided by the MAWPCC and regional research and development center often determined whether to base estimation of the unknown firm's pollution upon allowable permit ranges or to omit the firm and estimate later. Estimations based upon permit conditions were generated with Equation 2. Maximum conditions were used because few average permit conditions were listed.

(2)
$$E_{e} = \frac{A_{k}}{M_{k}} \times M_{u}$$

where:

E_e = Effluent estimation based on allowable permit conditions A_k = Actual reported effluent value of known firms M_k = Maximum allowable permit value of known firms M_u = Maximum permit value of unknown firm

Some firms contained extensive effluent concentrations (MG/L) but no flow rate to convert to pounds. In such instances an average flow rate per employee was developed from similar firms in the sector and applied

to known average annual employment. Some firms not listed in the manufacturer's directory were monitored. These firms were processed if employment data and SIC products were available. The inclusion of these firms tended to balance out those listed firms which were not monitored.

After the data in all sectors were processed, a measure of the adequacy of the regional samples was undertaken as shown in Table 1. The percent of total firms and total employment covered in each manufacturing sector suggested that data supplementation was needed. Although 76 percent of employment was covered, one particular firm in the Transportation Equipment Sector accounted for over 60 percent of total regional manufacturing employment. Omitting this one firm resulted in only 16 percent of employment being covered.

On a sector-by-sector basis half had less than 50 percent coverage and three had no coverage. Thus, two types of supplementation were needed: sector and product. Sector supplementation was required for extremely low coverage of all products such as the Apparel sector. Product supplementation sought to give coverage to specific categories of products produced in the region but not by firms in the regional sample, for example, Food Processing.

The idea is to simulate the unaccounted region with data of similar firms producing similar products in other parts of Mississippi and monitored with a common sampling procedure. In using the non-regional supplementary data, the assumption is made that similar firms have similar patterns of waste loadings [25].

To select the supplementary data, lists of all Mississippi coastal firms in each sector and their respective SIC products were compared to the firms and products of the regional sample. Using firm employment and product coverage, the degree of supplementation was ascertained. For example, the Apparel sector required total sector supplementation. The Food

TABLE 1

PERCENT COVERAGE OF MAWPCC REGIONAL SAMPLE INDUSTRIAL CLASSIFICATION SECTORS Mississippi Coastal Region 1977

				Percent	Employment		Percent
Sector	Sector Number	Firms in Regional Sample ^a	Total Regional Firms ^b	Firms Sampled R	lea	Total Regional Employment ^b	of Coverage
Manufacturing:							
Food Processing	Ø	20	35	57	1,591	2,153	62
Apparel	6	Э	12	0	0	1,745	0
Lumber-Wood	0	.7	<u>ى</u>	22	129	398	32
Paper-Allied	=	_	,	100	1,326	1,326	100
Printing-Publ.	12	0	11	0	0	433	0
Chemicals Petro.	е П	7	14	50	1,834	2,023	16
Stone, Clay, Glass	assl4	2	13	15	460	762	6 0
PrimFab. Metals	ls 15	ŝ	33	ი	267	3,351	13
Transp. Equip.	16	-	19	J.	22,000	23,033	96
Misc. Mfg.	17	0	34	0	0	1,090	0
Total Mfg.		36	181	20	27,607	36,314	76
Non-Manufacturing:	.: 5						
Mining	Q		7	14	ų	220 ^C	2
Construction	 ۲	-	NA	ı	NA		•
Comm. Pub. Util	. 20	_	2	50	NA	NA	

പറമം

[23] [29] [27] Includes power generating plants only.

Processing sector, though with over 50 percent coverage in the regional sample, contained effluent data only from seafood processors. In order to give a more accurate sector profile, firms with categories such as beverages and bread were needed. Thus, bottlers and bakeries in other areas of Mississippi were added to the regional sample as supplementary data. The regional research and development office and engineering experts as well as the manufacturer's directory were instrumental in selecting non-regional firms to include in the supplementary sample.

Selected non-regional firms were then processed on worksheets in the same manner as regional firms. Total sector poundage of water effluents was estimated by adjusting the regional quantities to correspond to total area employment, utilizing both regional and selected non-regional data when necessary. The computational procedure summarized in Equation 3 implies a proportion of the mean taken from the regional and non-regional samples for the supplementary data. Average effluent per employee \overline{x} of the supplementary sample was weighted by the factor $\frac{n_1}{n_1 + n_2}$ corresponding to regional sample employment and a factor $\frac{n_2}{n_1 + n_2}$ corresponding to nonregional sample employment.

(3)
$$\bar{\mathbf{X}} = \frac{\sum_{i=1}^{\tilde{\Sigma}} \mathbf{X}_{1i} + \sum_{i=1}^{\tilde{\Sigma}} \mathbf{X}_{2i}}{n_1 + n_2} = \frac{n_1}{n_1 + n_2} \bar{\mathbf{X}}_1 + \frac{n_2}{n_1 + n_2} \bar{\mathbf{X}}_2$$

where:

 \bar{X} = Average effluent/employee, supplemental sample (lbs/emp) n_1 = Regional sample employment n_2 = Non-regional sample employment \bar{X}_1 = Regional effluent/employee, supplemental sample (lbs/yr) \bar{X}_2 = Non-regional effluent/employee, supplemental sample lbs/yr)

Total industrial sector water pollution X was computed as shown in Equation 4. Estimated tonnage of the uncovered sector is equal to NX. Thus, the actual tonnage of effluent A obtained from the regional sample was added to the estimated tonnage of the uncovered sector NX obtained in Equation 3.

 $X = A + N\bar{X}$

where:

(4)

A = Actual tonnage from regional MAWPCC sample
N = Sector employment not covered by regional
 sample
X = Average effluent/employee, supplementary
 sample

Agricultural Water Effluents

Important water effluents for the agricultural sectors should include fertilizers, irrigation residues, pesticides, and sediment [44]. However, there is little data available on area source pollution (agriculture) in a useable, quantifiable form at the national or state level, and almost none at the county level. Similar studies, even in agricultural-intensive regions, also encountered severe data problems [4], [16], [17]. The usual practice was to enter zeros even if it was known that some quantity is generated.

It was discovered that agricultural pollution in the Mississippi Coastal Zone is relatively insignificant [25]. Small quantities of pesticides and toxic chemicals run off, especially in the upper Pascagoula River in Jackson County. There is also some murkiness of water caused by the sandy soil. Agricultural activity in the coastal area, including fisheries, comprised only one percent of total estimated output in 1977 (see Appendix A) and is not in close proximity to urban centers. The potential for natural absorption by the environment is somewhat enhanced. Thus, it was felt that little accuracy is sacrificed by omitting some categories of agricultural water pollution. However, total irrigation water in acre feet was converted to gallons and entered as waste water flow for the Crops Sector.

Commercial and Household Water Effluents

Commercial and household effluents are primarily waste water sewage and were provided on municipal and private printouts [23]. Effluent loadings for 24 available printouts were processed and compiled on worksheets in a similar

manner as the industrial sectors. However, 71 smaller facilities had no available printout and required indirect estimation of annual waste water flow with unpublished data. Hence, published and unpublished data were the source of information to estimate in millions of gallons total commercial and household waste water flow. Total household waste water flow was then estimated using average per capita data. Subtracting this total from the combined commercial and household flow, the remaining amount gives an estimate of the total annual commercial sector waste water, as shown below: 9.623.635 MGY Printout and non printout facility water flows^a -5.205.740 MGY Household water based on per capita data^b =4.417.895 MGY Commercial waste water flow

^a[23], [24] ^DSee Households, Appendix B

Total commercial waste water flow of 4,417.895 million gallons per year was allocated among its respective eleven sectors (18-19, 21-29) based on engineering factors such as those shown in Table 2. The final column of Table 2 is based on the assumption that approximately 80 percent of total water usage is waste water and 20 percent is either consumed or recycled [25]. When specific engineering units were not available, for instance, store frontage feet, other measures such as per capita waste water were applied to sector employment.

After allocating all quantities of commercial waste water among the commercial sectors, effluent quantities per commercial sector were derived by applying Equation 1 to domestic sewage concentration factors as shown in Table 3. These particular effluents were chosen because they appeared consistently on the printouts for sewage treatment facilities. The final column shows the ultimate load to the environment by subtracting the 85 percent of effluent that is cleaned at the treatment facility before entering the environment. Medium concentration was chosen because the Mississippi Coastal Zone is between medium and weak levels, but more toward the medium range [25]. Chlorine and fecal coliform were not listed in the engineering

TABLE 2

SELECTED ESTIMATED WATER CONSUMPTION AT COMMERCIAL ESTABLISHMENTS MEDIUM CONCENTRATIONS (Gallons per day)

Type of		Total Water Flow	Waste Water Flow
<u>Establishment</u>	Unit	Rate: gpd/unita	Rate: gpd/unit ^D
Service Stations	Рытр	500	400
Restaurants (avg.)		7-10	5.6-8
Stores	25 Ft. Front	450	360
Hotels	Room	50-100	40-80
Motels	Room	100-150	50-120
Hospitals	Room	150-250	120-200
Schools	Pupil	15-20	12-16
Institutions (avg.		75-125	60-100
Offices	Office	10-15	8-12

^a [20] b [25]

TABLE 3

TYPICAL EFFLUENT COMPOSITION OF DOMESTIC SEWAGE SELECTED VALUES (Concentrations in Milligrams Per Liter)

Effluent	Medium <u>Concentration^a</u>	Net Concentration After Treatment ^b
BOD	200	30
Suspended Solids	200	30
Nitrogen	40	6
Oil and Grease	100	15
Chlorine ^C (lbs)		3.478 /MG
Fecal Coliform (#/ML) ^C		2.80 /MGY

a b[20] [25] Chlorine and fecal coliform were estimated in pounds and number per milliliter (#/ML) per million gallons of waste water, respectively, from available MAWPCC sewage facility printouts.

.--

table and had to be estimated from facility printouts in pounds and number per milliliter (#/ML) per gallon of waste water, respectively, by dividing total facility water flow by total facility effluent.

At this point we have quantities of effluent loadings and waste water for all commercial sectors and waste water flow for the Household sector. To identify effluent loadings of households, total printout and non-printout estimates of facility loadings were summed to yield combined effluent magnitudes for commercial and household sectors. Categories of effluents for all commercial sectors were then summed and subtracted from their corresponding regional effluent control totals to allocate household effluent quantities.

B. Air Emissions

Quantities of air pollutants were derived from national data and from studies of similar areas because localized data were unavailable. For estimation purposes the 30 economic sectors of the Mississippi coastal model were divided into non-household and household categories to best utilize available data within time and budgetary constraints. The household category, consisting of sector 30, was estimated with emission factors published by the Environmental Protection Agency [50], [51]. The non-household category includes sectors 1-29 and was estimated by adapting to the Mississippi coastal region the air pollution coefficients derived in regions of South Carolina [16]. Adjustments using engineering and technical information were necessary at times to complement the estimates obtained.

The South Carolina data were based on a pioneering study by Peter Victor, which, in turn, was derived from the EPA emission factor study [S2]. Thus, both household and non-household data were based utimately upon EPA emission factors.

Household Category

Household air pollution is composed primarily of emissions from privately-owned automobiles and trucks. The Mississippi State Motor Vehicle Comptroller's Office provided automobile registrations and other data which allowed EPA emission factors to be applied to the Mississippi Coastal Zone [32].

Other regional data such as average ambient coastal temperature and

vehicle model year distribution were obtained from a variety of secondary sources and applied to EPA emission factor tables to compute the parameters of the emission formula shown in Equation 5. Every effort was made to obtain data which simulated actual conditions of the Mississippi coastal region. Of course, when no regional data were available, documented national data had to be substituted. Total pollutant in grams per mile was converted to tons per year based upon miles traveled per vehicle model year using the estimated parameters of Equation 5.

(5)
$$E_{npstu} = \sum_{i=1}^{n} C_{ipn} \times M \times V \times Z \times R_{ipt}$$

where:

E ⁿ pstu		Composite emission factor in grams per miles traveled for calendar year n, pollutant p, average speed s, ambient temperature t, and percent of cold opera- tion u,
C _{ipn}	=	Mean emission factor for the i^{th} model year, during calendar year π , and pollutant p,
M _{in}		Fraction of annual travel by i th model year during calendar year n,
۷ _{ips}		Speed correction factor for i th model year vehicle, pollutant p, and average speed s,
^Z ipt	=	Temperature correction factor for i ^t h model year vehicle, pollutant p, and ambient temperature t,
R iptw	=	Hot-cold vehicle operation factor for i th model year vehicle, pollutant p, ambient temperature t, and percentage of cold opera- tion w.

Non-Household Categories

Non-household air pollution includes industrial and commercial process pollution as well as vehicle emissions. Sectors in the South Carolina study were compared and grouped to correspond with the 29 Mississippi sectors. When sectors correspond exactly, e.g., Mining, the South Carolina coefficients were incorporated directly into the Mississippi model. When the Mississippi input-output study contained more sectors than corresponding South Carolina categories, the latter's coefficients were multiplied by each Mississippi sector's proportion of total output in the sector category. The estimated Mississippi air coefficient thus derived in weight per dollar was then converted to tons by multiplying tons per dollar by total Mississippi sector output.

When the South Carolina study contained more sectors in a given sector category than the Mississippi coastal model, total tonnage of pollutant was estimated as shown in Equation 6. Total tonnage per each South Carolina sector in the Mississippi category was found by multiplying tons per dollar of output by South Carolina sector output. Total tonnages per South Carolina sector thus derived were summed to give total tons of pollutant (T_s) for South Carolina sectors in the Mississippi input-output category. Total dollar output per South Carolina sector was summed to yield total output (O_s). The product of South Carolina tonnage and 1977 Mississippi sector dollar output (O_m) was divided by total South Carolina sector output (O_s) to give estimated Mississippi tonnage.

$$X = \frac{T_{s} O_{m}}{O_{s}}$$

where:

X = Estimated tons of pollutant in Mississippi T_S= Tonnage of South Carolina sectors 0_m = Dollar output of Mississippi sector 0_s = Dollar output of South Carolina sectors

Comparisons with unpublished data indicate a fair level of accuracy using this procedure. Some minor adjustments were made, however, and some known pollutant quantities not previously listed were added.

C. Solid Waste

Solid waste was estimated primarily from per-capita solid waste factors published in a detailed engineering study [42]. Examples of the types of data used are given in Table 4. Appropriate solid waste factors in pounds were multiplied by corresponding units, many of which were the same types used in estimating waste water flows.

TABLE 4

APPROXIMATE	SOLID	WASTE	GENERATION	RATES
SI	ELECTED) CATE(GORIES ^a	

Source of Waste	Unit	Pounds per day/ Unit
Schools, general	Pupi]	2.1
Hospital	Bed	8.0
Hotel, medium class	Room	1.5
Restaurant	Meal	2.0
Food Processing ^b	Employee	131.73
Lumber and Wood ^b	Employee	534.33
Paper and Allied	Employee	13.33
Transportation Equip.	Employee	8.67

^a[42] ^bAverage of sub-categories.

For sectors in which listed waste factors were not practically available, more general factors such as those shown in Table 5 were used. Agricultural waste factors (Livestock) in wet tons per year were adjusted for dry weight. Household solid waste was derived by applying waste factors of the appropriate coastal population density to estimated 1977 Mississippi coastal population.

TABLE 5

AVERAGE SOLID WASTE COLLECTED SELECTED CATEGORIES (Pounds per day per person)

Solid Waste Type	Urban	Rural	National
Commercial	.46	.11	.38
Industrial	.65	. 37	.59
Construction	.23	.02	.18
Miscellaneous	. 38	.08	.31

Source: [42]

IV. THE ENVIRONMENTAL MODEL MISSISSIPPI COASTAL REGION

The basic structure of the environmental matrix for the coastal region of Mississippi is shown in Table 1. It contains 29 rows representing the endogenous sectors, that is, the economic producing sectors of the region. Households, the last row, is the exogeneous sector representing pollutants by non-producers. It also contains thirty columns. The first column headed Waste Water is water partially treated or nontreated which is dumped into the environment as a consequence of the economic process. The other 29 columns are net unpriced loadings of water effluents, air emissions, and solid waste from the area's economy into the environment. The units of measurement differ but, when appropriate, were given in tons per year. The coefficients in the table represent values estimated for the year 1977.

The data used to compile the coefficients in the matrix were obtained from various sources. The primary source of data for water pollution was computer printouts provided by the Mississippi Air and Water Pollution Control Commission. Other coefficients were obtained from several sources. For instance, air pollution tonnages were primarily obtained, after adjustments, from work obtained from unpublished sources, telephone surveys and engineering information.

Methodologies and techniques by which these values were obtained are given in Section III. A full description of actual calculations based upon the methodology is detailed in Appendix B. Hence, every value that

appears in Table 1 has its justification in that appendix.

By weight, there were approximately 16,000 tons of water pollutants, 114,000 tons of air emissions, and 407,000 tons of solid waste dumped into the environment totalling 537,000 tons. Also included was approximately 369 billion gallons of waste water. Portions of these pollutants were contributed directly as by-products of the economic activities and other portions by households as part of the consumption process, as shown in Table 1.

It should be pointed out that the coefficients for PH, temperature, and fecal coliform which appear in Table 1 are measurements of concentration, and hence meaningless if aggregated. They were provided for completeness and should be interpreted with special care.

An examination of Table 1 reveals that some producing sectors have no environmental data. The reason for these omissions is the unavailability of data either in published form or the impossibility of obtaining information directly, or it might be that the sector does not contribute much of some particular pollutant. Such omissions will cause bias when the linkage of the economic and environmental models is executed, resulting in an underestimation of the economic impact upon the environment.

A ranking of Pollutants according to economic criteria as represented by the producing sectors is presented in Table 2. The information in this table provides a basis for identifying and comparing the sectors in terms of their relative importance in generating volumes of pollutants. For instance, in the ranking for nitrogen, Food Processing (Sector 8) is ranked highest among the producing sectors in its contribution. The lowest contributor is Finance, Insurance and Real Estate (Sector 24).

Table 3 gives the volume of pollutants per \$10,000 of production.

Each entry in the table represents the magnitude of pollutants per each \$10,000 produced. For instance, the Food Processing sector contributes .706 million gallons of waste water, .001 tons of chlorine, .023 tons of nitrogen, .044 tons of BOD, .076 tons of suspended solids, .04 tons of settleable solids, .02 tons of oil and grease., .015 tons of nitrogen oxide, .076 tons of sulfur oxides, .001 tons of carbon monoxide, .008 tons of particulates, .001 tons of aldehydes, .001 tons of hydrocarbons, and 3.988 tons of solid waste for each \$10,000 produced during one year.

In this manner, a comparison can be made among sectors in terms of the production of pollutants per unit of sales, a unit being defined as \$10,000 of output. It is necessary to mention here that the values given in the table represent the "direct" environmental effect of \$10,000 of sectoral sales. The "secondary" environmental effects resulting from the interindustry sales and purchases will be given in the subsequent report.

Table 4 ranks the producing sectors in terms of the environmental factors for each \$10,000 of sales. For instance, Sector 8 produces more nitrogen per \$10,000 of sales than Sector 10, and Sector 10 in turn produces more nitrogen per \$10,000 of sales than Sector 28, and so on.

A cursory look at Table 2 and Table 4 will reveal that the two types of ranking give different results. In Table 2, the ranking is based upon total magnitudes, while in Table 4 it is based upon a unit of production, \$10,000 of output.

Table 5 gives a review of each pollutant separately. For each pollutant, the five top sectors that contributed the highest direct loadings are specified and the results displayed as percentages. For each of the residuals, the top five contributors accounted for the majority.

Some residuals, as indicated in Table 5, are shown to be contributed by one sector, for instance, flouride, having the sole contributor as

Chemicals and Petroleum, and similarly for heavy metals and sulfides. The proper interpretation is that in these cases, either data were available only for that particular sector or it is in fact the only or major contributor of that residual.

TABLE 1	PHYSICAL QUANTITIES OF WATER EFFLUENTS, Air Pollution, and solid wate Mississippi coastal region 1977
---------	--

.

Number	sector Name	Maste Water (MGY)	PH (Scientific Unit)	[emperature (Of arrenheit)	Chlorine (Tons/yr)	Mitrogen (Tons/yr)	Sulfides (Tons/yr)	Flouride (Tons/yr)	Phosphate (Tons/yr)
-	Fisheries								
2	Fores try								
	Livestock Products								
	Crops & Agricultural	175,634							
	A., Forestry, Fish Svc.								
- -	Mining	633.600							
~	Construction	759.000	7 1						
- -	Food Processing	7.534.839	7.5	74 0	62E W	245 560			
	Accarel & Finished	178.614			135	2 246			
	lumber å wood	111 268	10	1 2 3 2 3		12 010			
	Paper & Allied	7.245 000	7.1	2.02		46.777			
	Printing & Publishing	495 4		2.11					
	Themical & Datro & Other	026 968 61	0	0.03		260 631	1.011	-	
	Giona flav Lelace	607 610 31	0	03.0		006.001	1.511	1 4.00,003	
	Judges and a diase	3, 24U. 4UB	n' 6	(.9)	010.				
<u>.</u>	Primary a rad. Petals	1,458.868	7.9	80.0	111-	17.983			7.00
	Transportation Equip.	324,804,460	7.6	82.7	1.586				1/17
	Miscellaneous Equip.	86.848	7.9	71.2	.028	616.			
	Mater Transportation	17.500			IEO.	438			
Ť	Other Transportation	10.335			.018	. 259			
_	Communication & Pu.Utl.	44.832	7.8		002				
	Eating and Drinking	298.636	•		519	7.472			
•	Service Stations	102.600			6/1	2.568			
-	dholesale & Retail	212,670			370	5.321			
	Finance, Ins.4 Real Est.	5.685				142			
-	4otel, Motel, Lodqtna	61.628			107	1 542			
_	Medical Services	120.421			012	1011			
_	Educational Services	173.364			2012 2012	112			
_	Other Services	3, 385, 135			5 887	P4 696			
29. S	State & Local Gov't.	29,910			550	749			
÷. Ř	Households	5,205,740			6,943	136.383			
	TOTAL	369,127.735			23.539	680.523	118.1	256.363	7.275
		202,121,202			500.03	202.200			2

				PHYSICAL (PHYSICAL QUANTITIES OF WATER EFFLIENTS, AIR POLLUTION, AND SOLID MASTE	MATER EFFLUEN	TS,			
				Ċ	2161	TAL REGION				
Sector Number	Heavy Metals (Tons/yr)	Zinc (Tons/yr)	Cadmilun (Tons/yr)	[ron (Tons/yr)	Chromium (Tons/yr)	Aluminum (Tons/yr)	Copper (Tons/yr)	Nickel (Tons/yr)	Lead (Tons/yr)	Fecal Coliform (#/ML)
— N 四年6 6 ~ 8 ;										
6 <u>2</u> 22		.671			.671					6/2°02450'5'
21	13.081		.576	46.498	.626					7,069.778
15 16		.869 7 169	1.508	2.907	154.	7.429	8// .	967.1		
17		600.		.006	.013				.077	24,041.845 5,752.584 49,000
50				E00 .			100*			28, 938 28, 938
525										836. [N] 2N/ 2N
24 24										595.476 595.476
56 26										937.175
28										485.419 9,476.378
8										83.748
TOTAL	13.081	3.717	2.084	49.414	1.850	7.429	677.	97.7.1	110	
ML = Milliliter	liter									

	EFFLUEN
(Cont)	OF WATER
TABLE 1	VANTITIES C

PHYSICAL QUANTITIES OF WATER EFFLUENTS, AIR POLLUTION, AND SOLID WASTE MISSISSIPPI COASTAL REGION 1977

Sector Number	80D (Tons/yr)	C0D (Tons/yr)	Suspended Solids (Tons/yr)	Settleable Solids (Tons/yr)	011 & Grease (Tons/yr)	Phenols (Tons/yr)	Organic Carbon (Tons/yr)		Nitrogen Sulfur Oxide (Tons/yr) Oxides (Tons/yr)
مر هو دی ای مو									
, or			113.302						189, 68 1
æ 6	467.941 6 760		812.232 20 985	423.188	209.382			160.014	810.20E
25 25	41.264		50,000 68,110 1.383 000		7.727	. 160		155.5/0 8.394	143,200 54,393
21			•					+J0.00	\$05.546 \$72.
<u> </u>	36.655	665.498	8 607.011 632.101		316.628 12 902	.314	52.836	3,526.913	1,800,0.30
5	.051		34.469		16.951			77.500	77.702
0	36.655		47.370		. 703			2,306.791	116.658
200	2.190		5,613		1.161	.002		191.053	148.027
6	1.293		1.293		547			91.599 128.768	
22	,019 036 76		7.965		.170			9.083	40,000.000
22	12,836		57.359 12 R36		18.680			0 013 000	411 CAO
23	26.606		26.606		13.303			060.010.0	0+0-774
55	117.		117.		. 356				
26	15.065		15.065		7 533				
27	21.689		21.689		10.844				
28	423.480		423.480		211.740				
£) %	3.742		3.742		1.871				
N.	054.920		5,367.271		320.961				
TOTAL	2,512.273	665.498	8 9,795.300	423.168	962.927	.476	52.836	15.703.631	119.515.44

33

TABLE 1 (Cont)

PHYSICAL QUANTITIES OF WATER EFFLUENTS, AIR POLLUTION, AND SOLID MASTE MISSISSIPPI CONSTAL REGION

.

	Nickel	2
	Copper	<u>s</u>
	Aluminum	5
	Chromium	ھ <u>ت</u> تھک
	Iran	25 25 25
IT LON	Cadmium	<u>5 5</u>
)F POLLL	Zinc	あるので
NTITLES (SECTOR stal Reg	Heavy Metals	د
HYSICAL QUA CATEGORY BY issippi Coa	Phosphate	<u>ہ</u> ہے
RAMKING OF PHYSICAL QUANTITIES OF POLLUTION Category by Sector Mississippi Coastai Region 1977	Flouride	<u></u>
~	Sul fides	<u>۳</u>
	Nitrogen	*°°*85°23358°°%°>8°288°28
	Chlorine	88825258888955888 8122528888959888955888 81
	Naste Nater	908-987-95923*8 4 7887-888558283
	Rank	- NE 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE 2

Fecal Coliform is not ranked because it is measured as a concentration rather than an aggregate. TABLE 2 (Cont)

RANKING OF PHYSICAL QUANTITIES OF POLLUTION CATEGORY BY SECTOR Mississippi Coastal Region 1977

	. 1	
	Solid	\$
	Hydro- Carbens	222 05593412866 0559341286
	Alde-	22°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
	Parti- culates	82×9=54 5858 8 9 2 0 2 9 5
	Carbon Monoxide	25 8 8 7 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8
	Sulfer Oxides	8585549569555555555555555555555555555555
	Ni trogen Oxide	CS511845388971855
	Organic Carbon	2
1/61	Phenols	50L
	011 and Grease	88855555555555555555555555555555555555
	Settleable Solids	80
	Suspended Solids	85855555555555555555555555555555555555
	G	<u></u>
	008	8228332552335522388158 82283335522355
	Lead	2
	Rank	

36

. .

\$10,000 OUTPUT	REGION	
QUANTITIES OF POLLUTANTS PER \$10,000 OUTPUT	MISSISSIPPI COASTAL REGION	1977

Sector	Maste Mater (MGV)	(Tons)	Ni trogen (Tons)	Sulfides (Tons)	Flouride (Jons)	Phosphate (Tons)	Heavy Metals (Tons)	Zinc (Tons)	Cadmium (Tons)	Iron (Tons)	(Tons)
	019										
	0.4.										
	0 4 4										
	. 240										
	301	100									
		Ŗ.	(J).					,			•
	80 - C		100.					1			I
	0/2		210.								
	040.										
	800								•		•
	205	•	,006	•	.010		100'		a r	2007	5
	1.291	+									
	.105	*	100.			100.		*	4	*	*
	4,928	+				•		•			•
	.028	4	*					*		•	•
	900.	+	*								
	£00.	•									
	£00.	#								¥	
	.092	*	.002								
	.098	*	.002								
	600'	*	4								
	•	٠	•	*							
	.017	•	*								
	028	+	40 1								
	.037	*									
	206	100									
	067,	<u>.</u>	'n.								
	200.	•	÷								

* Less then .001

TABLE 3

(Cont)	
m	
TABLE	

QUANTITIES OF POLUTANTS PER \$10,000 OUTPUT MISSISSIPPI COASTAL REGION 1977

- 01									
n at to									
9 ~ 8 6					440. 440.		860 900 900 900	.040	n2n.
							.124		
					.00.	9 .026 5	- 024 - 252		88. 88. 88. 88. 88. 88. 88. 88. 88. 88.
192	100	•	* *	•	100 100		.00 002		* *
8 6					0.	-	100		* •
20		*					.00 .012 .02		* 95.5
200					19.	v	100 [.]		<u>8</u> 8.*
នេះខ					.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.002		100. 200.
27 28 29					00, 00, 003	75	.037		500 ⁻

38

-

Organic Carbon Nitrogen Oxide Sulfur Oxide Carbon Momoxide (Tons) Oxide Sulfur Oxide Carbon Momoxide (Tons) Organic Carbon Momoxide (Tons) Operation Oxide Sulfur Oxide Carbon Momoxide .015 .015 .076 .001 .001 .008 .049 .001 .001 .001 .008 .049 .001 .001 .001 .008 .049 .001 .001 .001 .007 .0139 .061 .001 .001 .006 .0181 .001 .004 .001 .006 .0183 .002 .004 .004 .0035 .002 .002 .004 .004 .0035 .023 .018 .004 .004 .035 .035 .026 .004 .004 .035 .035 .018 .018 .004 .035 .035 .018 .018 .014 .035 .035 .018 .018 .014 .038.487 .018 .101	Nitrogen 0x1de Sulfur 0x1de Carbon Monox1de (Tons) (Tons) (Tons) (Tons) (1001 .008 .049 .001 .008 .049 * .049 * .001 .001 .001 .049 .001 .046 .002 .004 .054 .002 .004 .054 .001 2.686 .001 2.138 .410 38.487	Particulates Aldenydes Hydrocarbons 50110 Maste (Tons) (Tons) (Tons) (Tons)	.030 .170 55.900	100		•	121	+	100. 100.				600 [°] 200 [°]	.01	ciu. cou.	1.069 4.633 .079	. 254	169. 201	161.2 VED
Organic Carbon Nitrogen 0 (Tons) .015 .008 .008 .008 .008 .008 .008 .001 .001 .002 .139 .003 .035 .005 .006 .006 .006 .007 .035 .008 .006 .001 .001 .002 .138 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001	Organic Carbon Nitrogen 0 (Tons) 015 0080 0080 0080 0087 0015 0015 0015 0015 0015 0015 0015 001	Carbon Monoxide (Tons)		100	100.	+	*	٠	100.	Ŧ		004	.046	. 054	100.	38.487			
Organic Carbon Nitrogen 0 (Tons) .015 .008 .008 .008 .008 .008 .008 .008 .008 .009 .008 .001 .001 .002 .139 .003 .035 .003 .033 .003 .033 .033 .033 .033 .033 .034 .033 .035 .033 .035 .033 .033 .033 .034 .034 .035 .035 .035 .033 .035 .033 .035 .033 .035 .034 .035 .035 .036 .036 .037 .037 .038 .038 .039 .038 .031 .038 .031 .038 .031 .038 .031 .038 .031 .038	Organic Carbon Nitrogen 0 (Tons) 015 0008 0008 0008 0009 0005 005 005 005 005 005 005 005 0	ide Sulfur Oxide (Tons)																	
		Nitrogen ((Tons)		210	080.	.008	.008			.006	.035	.062	020.	.035	100.	2.138			
	Phenols (Tons) * * *							000											

TABLE 3 (Cont)

QUANTITLES OF POLLUTANTS PER \$10,000 OUTPUT MISSISSIPPI COASTAL REGION

* Less than .001 Tons

TABLE 4

.

RANKING OF POLLUTANT QUANTITIES PER \$10,000 OUTPUT CATEGORY BY SECTOR Mississippi <u>Co</u>estal Region

	Copper Nickel	*
	Copper	•
	A) umi num	<u>ν</u>
	Chrostum	•
	Iron	<u>ო</u>
	Cadmium	•
uolfi	Zinc	•
())	Heavy Netals	<u>~</u>
MISSISSIPPI LOASEAL MEGLOR	Phosphate	<u>ک</u>
-	Flouride	<u>٣</u>
	Sulfides	*
	Nitrogen	8 28 13 21,22 9,15,26,27
	Chlorine	9 0 7
	Waste Water	20,50 20,500
	Rank	

* All sectors less than .00% ton/\$10,000.

TABLE 4 (Cont)

RANKING OF POLLUTANT QUANTITIES PER \$10,000 OUTPUT CATEGORY BY SECTOR Mississippi Coastal Region 1977

Solid Maste	
Hydro- carbons	22 13,20 13,20 19 19 10 12 12 12 12 12 12 12 12 12 12
Hydro- Aldehydes carbons	9,10,14 9,10,14
Parti- culates	2048025-8050
Carbon Parti- Monoxide culates	22 13 14,20 8,9,14,20
Sulfur Oxides	220 1220 15112 152115 152112 1521112 1521112 1521112 1521111 15211111111
Ni trogen Oxide	S5508865739 2508865739 2508865739 26
Organic Carbon	٣ -
Phenols	*
0il and Grease	28 21,22 23,22 15,23,25 26,23
Settleable Solids	
Suspended Solids	111 8 8 10 13 23 23 23 24 25 16,18,20,23
00	13
BOD	8 11 21,22 25 26 26 26 25 26 26 25 26
Fecal** Coliform	=
Lead	*
Rank	9833888893555688565895555698999558689958888888888

* All sectors less than .001 ton/\$10.000. **Not ranked because fecal collform is measured as a concentration rather than an aggregate.

TABLE 5

PERCENT OF TOTAL POLLUTANTS ATTRIBUTABLE TO THE TOP FIVE SECTORS BY POLLUTANT CATEGORY Mississippi Coastal Region 1977

Waste Water

Transportation Equip.	88%
Chemicals & Petroleum	4%
Food Processing	2%
Paper & Allied	2%
Households	1%

Nitrogen

Food Processing	36%
Chemicals & Petroleum	23%
Households	20%
Other Services	12%
Primary & Fabri. Metals	3%

Flouride

Chemicals &	Petroleum	100%
-------------	-----------	------

Heavy Metals

	Chemical	8	Petroleum	100%
--	----------	---	-----------	------

Cadmium

Primary &	Fa	ibri.	Metals	72%
Chemicals	å	Petro	oleum	28%

Chromium

Apparel & Finished	36%
Chemicals & Petroleum	34%
Primary & Fabri. Metals	23%
Transportation Equip.	6%
Miscellaneous Mfg.	1%

Chlorine

Households	40%
Other Services	25%
Food Processing	19%
Transportation Equip.	7%
Primary & Fabricated Metals	3%

<u>Sulfides</u>

Chemicals & Petroleum 100%

Phosphate

Primary & Fabricated Metals 96% Transportation Equip. 4%

<u>Zinc</u>

Transportation Equip.	58%
Primary & Fabricated Metals	23%
Apparel & Finished	18%
Miscellaneous Mfg.	1%

Iron

Chemicals & Petroleum	94%
Primary & Fabricated Metals	6%
Miscellaneous Mfg.	a
Communications & Pub. Util.	а

Aluminum

Primary & Fabricated Metals 100%

100%

26%

19% 19%

17%

9%

8%

6%

6%

TABLE 5 (Cont)

Copper

Primary and Fabri. Metals 100%

Lead

BOD

Miscellaneous Mfg.

Households Paper & Allied

Food Processing

Chemicals & Petroleum

Other Services

Nickel

Primary & Fabri. Metals 100%

Fecal Coliform

(Not applicable to concentration)

COD

Chemicals & Petroleum 100%

Suspended Solids

55% Households 14% Paper and Allied Food Processing Stone, Clay & Glass Chemicals & Petroleum

0il and Grease

33% Households 22% Other Services Food Processing 22% Chemicals & Petroleum 12% 2% Eating & Drinking Places

Organic Carbon

100% Chemicals & Petroleum

Sulfur Oxides

Communications & Pub. Util.	90%
Chemicals & Petroleum	4%
Food Processing	2%
Paper & Allied	1%
Service Stations ^b	a

Settleable Solids

Food Processing 100%	sing 100%
----------------------	-----------

Phenols

Chemicals & Petroleum	66%
Lumber & Wood	34%
Miscellaneous Mfg.	đ

Nitrogen Oxide

Service Stations ^b	56%
Chemicals & Petroleum	22%
Transportation Equip.	15%
Miscellaneous Mfg.	1%
Apparel & Finished	1%

Carbon Monoxide

Service Stations ^b	99%
Other Transportation	a
Water Transportation	a
Mining	a
Mining Miscellaneous Mfg.	a

TABLE 5 (Cont)

Particulates

Communications & Pub. Util. Service Stations ^b Stone, Clay, & Glass Lumber & Wood Paper & Allied	35% 16% 15% 10% 7%	Communications & Pub. Util. Other Transportation Water Transportation Mining Chemicals & Petroleum	45% 18% 13% 9% 5%
Hydrocarbons		Solid Wastes	
Service Station ^b Chemicals & Petroleum Printing & Publishing Communications & Pub. Util. Other Transportation	84% 7% 4% 4%	Households Eating & Drinking Places Primary & Fabricated Metals Food Processing Transportation Equip.	40% 14% 11% 10% 7%

⁴Less than 1% ^bService Stations include private automobile emissions by Households (see Appendix B, Households).

Aldehydes

V. EVALUATION OF THE MODEL

The purpose of this report is to determine the physical magnitudes of air, water and solid waste pollution generated through the economic activities of the coastal region of Mississippi. This is necessary, as mentioned earlier, for the subsequent stage where the linkage between the economic and environmental parts will be undertaken.

Water effluent information gathered in this report was based primarily upon actual data provided by the Mississippi Air and Water Pollution Control Commission obtained as part of their monitoring of producing establishments. However, other vehicles for collecting data had to be used such as secondary sources published by the Environmental Protection Agency or by incorporating findings of other similar studies. Some information was collected by phone or by personal contacts with engineers and experts in this field.

As is experienced by many regional researches, the problem of availability of necessary data in usable form was also encountered throughout this study. This fact is concisely expressed by Carter [7] who says, "The most common problem encountered in constructing regional economic models is the inadequacy of regional data." However, through painstaking efforts many results were obtained.

It is appropriate to mention that many estimates provided by this report were absent from most comparable regional studies. In this sense, the tables of environmental effluents in Section IV are more comprehensive and complete than many of similar make up.

Due to the shortcomings outlined above, the reader is cautioned

45

to keep in mind the necessary qualifications when interpreting and applying the results of this report.

ł

4

APPENDICES

APPENDIX A

APPENDIX A

Estimation of Sector Outputs Mississippi Coastal Region 1977

Because environmental factors are stated in 1977 tons, control total output per sector must be updated to 1977 in order to derive the direct coefficients of the environmental matrix. This is accomplished by applying to 1972 output the estimated increase in employment from 1972 to 1977. Implicit in this procedure is, or course, the assumption that output per employee has not changed over the five year span.

Employment

Because of time lags in government publications, it was not possible to estimate all employment with a data base comparable to that used in the 1972 model. Thus, in order to utilize the most current data in keeping with the magnitudes established in the previous model, the 29 sectors were divided into the following categories: agriculture, manufacturing and nonmanufacturing.

Total agriculture employment by category was unavailable as was the case for 1972 data. The rate of increase in the average annual number of agricultural workers based on place of residence from 1972 to 1977 was applied to the proportion of 1972 agricultural sector outputs. The resulting 1977 output estimates are published below in Table 1.

49

TABLE 1

ESTIMATED CHANGE IN AGRICULTURAL OUTPUT Mississippi Coastal Region 1972-1977

Sector	1972 Output ª	Estimated 1977 Output b
Fisheries	11,900,000	12,240,000
Forestry	7,900,000	8,126,000
Livestock	4,160,000	4,279,000
Crops	1,582,000	1,627,000
Agriculture, forestry,		.,,
fisheries, services	1,667,000	1,715,000
Total Output	27,209,000	27,987,000

^å [38] [27]

Manufacturing employment is taken directly from the 1978 Mississippi Manufacturers Directory which is the same source used previously to estimate 1972 employment [29]. The researchers feel that it is important to maintain the same data base for the ten manufacturing sectors because of their relatively significant air and water pollution loadings on the environment. The results are published in Table 2.

Non-manufacturing employment was derived in the previous report from several sources to utilize the most accurate estimate consistent with specific sectoral compositions [38]. These data sources, however, were unavailable for year 1977 at the time of the research. An indirect estimation procedure was used by which the estimated change in total non-manufacturing employment is allocated among the sectors according to their relative proportion of 1972 non-manufacturing employment. Again, the assumption of homogeneous regional structure is made.

To derive the estimated change in non-manufacturing employment, simply find the difference between the change in total non-agricultural employment (manufacturing and non-manufacturing) and the change in

TABLE 2

CHANGE IN MANUFACTURING EMPLOYMENT Mississippi Coastal Region 1972-1977

Sector	1972 ^a Employment	1977 ^D Employment	Absolute Change
		<u></u>	· ·····
Food Processing	2,015	2,153	138
Apparel & Finished Prod.	734	1,745	1,011
Lumber & Wood	556	398	(158)
Paper & Allied Products	1,650	1,326	(324)
Painting & Publishing	334	433	99
Chemicals, Petroleum, & Refining	1,682	2,023	341
Stone, Clay, Glass	528	762	234
Primary & Fabricated Metals	1,328	3,351	2,023
Transportation Equipment	18,299	23,033	4,734
Miscellaneous Manufacturing	1,017	1,090	73
Total Employment	28,143	36,314	8,171

на сталита и простояти и простояти сталита и простояти сталита. Поль такия сталита сталита сталита сталита стал В на сталита и простояти и простояти сталита и сталита и сталита сталита сталита сталита сталита сталита сталит В на сталита и простояти и простоят сталита и сталита и сталита сталита сталита сталита сталита сталита сталита

¢.

į

a [38] b [29]

manufacturing employment. The Employment Security Commission gave the following average annual non-agricultural employment based on place of work. It is noted that employment based on place of work varied only one percent from employment based on place of residence.

TABLE 3

NON-AGRICULTURAL EMPLOYMENT Mississippi Coastal Region 1977

County	1972	1977
Hancock	4,260	5,450
Harrison	40,490	46,450
Jackson	38,230	51,470
Total	82,980	103,370

Source: [27]

Employment in 1972 of 82,980, however, differs from the total of 80,897 actually used as a basis for the Mississippi coastal model in the previous report. Also, the change in manufacturing employment is not compiled from a directly comparable source and currently published data are continually revised. Thus, to keep the data consistent with magnitudes used in the model of the previous report, the current data were modified according to the following ratio:

Total Non-Agricultural Employment =
$$\frac{NAP_{72} \times NAB_{77}}{NAB_{72}}$$

where: NAP₇₂ = Total 1972 Non-Agricultural Employment, Previous Report, NAB₇₇ = Total 1977 Non-Agricultural Employment, <u>Benchmarks</u>, NAB₇₂ = Total 1972 Non-Agricultural Employment, <u>Benchmarks</u>.

Substituting the appropriate values yields an adjusted non-agricultural employment of 100,775 in 1977. Using this as a controlling total, the change in both total non-agricultural and manufacturing employment is computed below. The difference between the change in non-agricultural and manufacturing equals the estimated total change in non-manufacturing.

Change	in Non-Ag	gric <u>ultural</u>		<u>{</u>			<u>ifacturii</u> 1977	ng
	100,775	1977			36,		1972	
	80,897	1972			<u>- 28,</u> 8,	143	1972	
		Estimated	Change in	Non-Manu	facturi	ng		
			19,878					
			<u>- 8,1/1</u> 11,701					

The estimated change in non-manufacturing employment is allocated among the 14 non-manufacturing sectors as shown in Table 4. The estimated five year change in per sector employment shown in Column (3) is based on each sector's respective 1972 proportion of total non-manufacturing employment Column (2). Final results are shown in Column (4).

ш	4	
TABL	ABL	

ESTIMATED SECTORAL NON-MANUFACTURING EMPLOYMENT Mississippi Coastal Region

5	
•	
	5
Į.	\geq
3	6
1	-
-	
ς.	

5	
2	-
	5
	5
ś	σ
2	_
_	
ς.	

	6,200 2,200	.024098	10,159	Other services
12 166	002 0	.010217	539	Educational services
		57550°		Medical services
	000 206			Hotels, motels, and lodging
	0 0 0 0 0 0	78/8cn.	3,101	Finance, insurance, and real estate
14°1/0	2/c,2	.219945	11,603	Wholesale/retail trade
1,100	/17	.018558	979	Service stations
4,700	855	.072999	3,851	Eating and drinking places
2007 2007	545	.046575	2,457	Communication and public utilities
0000	125	.010691	564	Other transportation and warehousing
() 10/ 200	212	.018103	955	Water transportation
0,4/1	1,1/5	162001.	5,296	Construction
220	40	.003412	180	Mining
1977 Employment (1) + (3)	Employment 1972-1977 (2) x (1977 non-Mfq.)	Total Non-Mfg. Employment	Employment	

53

and a state of the second state of the second

transmission of the second second

Output

Output per sector for the year 1977 is estimated in Table 5 by multiplying 1972 output per employee by 1977 estimated employment. Agrîcultural output for sectors 1-5, which is based on agricultural workers and previous output, is taken directly from Table 1. The Paper and Allied sector experienced a 20 percent decrease in employment as noted in the table. However, the regional R & D office indicated that the implementation of labor-saving equipment has changed the production function of the Paper and Allied sector such that the capital-labor ratio and the total output have increased. Since actual data were unavailable, 1977 output for the Paper and Allied sector is estimated by applying the average percentage change in output by all other regional manufacturing sectors. Other sectors exhibiting an employment drop are considered to have experienced a concomitant output decrease.

1

54

TABLE 5	T	A	B	Ļ	Ε	-5
---------	---	---	---	---	---	----

ESTIMATED	SECTOR OUTPUT
Mississippi	Coastal Region
	1977

Sector	Output Per Employee (1972) ^a	Estimated Employment 1977	Estimated Output (Thousands) 1977
Fisheries Forestry Livestock products Crops and agricultural Ag, forestry, fisheries services Mining Construction Food processing Apparel and finished prod. Lumber and wood Paper and allied Printing and publishing Chemicals, petroleum, and related Stone, clay, and glass Primary and fabricated metals Transportation equipment Miscellaneous mfg. Water transportation Other transportation and warehousing Communication and public utilities Eating and drinking places Service station Wholesale/retail trade Finance, insurance, and real estate Hotels, motels, and lodging Medical services Educational services Other services State and local government	NA NA NA NA 52,544.44 37,651.06 49,547.40 13,508.17 28,120.50 49,113.93 17,973.05 125,581.45 32,939.39 41,629.52 28,614.73 28,143.56 26,251.31 53,244.68 49,599.77 6,881.07 8,725.23 17,578.64 35,763.30 11,516.24 20,044.97 70,530.61 8,683.85 17,332.64	NA NA NA NA NA 220c 6,471c 2,153b 1,745b 398b 1,326b 433b 2,023b 762b 3,351b 23,033b 1,090b 1,167c 689c 3,002c 4,706c 1,196c 14,178c 3,789c 3,084c 2,174c 659c 13,156c 9,970c	12,240c $8,126c$ $4,279c$ $1,627c$ $1,715c$ $11,560$ $243,640$ $106,676$ $23,572$ $11,192$ $111,832d$ $7,782$ $254,051$ $25,100$ $139,501$ $659,083$ $30,676$ $30,635$ $36,686$ $148,899$ $32,382$ $10,435$ $249,230$ $135,507$ $35,516$ $43,578$ $46,480$ $114,245$ $172,806$

a [38] b [29] c [27] [38] d Percentage change in output by all other manufacturing sectors multiplied by Paper and Allied output of 1972. See Text.

APPENDIX 8

APPENDIX B

Estimation of Physical Pollutant Quantities Per Sector

This appendix summarizes the estimating techniques used to derive pollutant quantities in physical units for each economic sector listed in Table I of Section IV. Many detailed calculations are enumerated and documented according to methodologies presented in Section III. Rather than repeat equations and actual technical data, reference is made frequently to the section from which equations and data were taken. Tables in Appendix B are not numbered because they refer only to specific sectoral computations.

Sectors are discussed in SIC categorical order as in the inputoutput model. Pollutant categories for each sector are treated in the following order: (1) water effluents, (2) air emissions, and (3) solid waste. All pollutants are ultimately converted to tons per year except waste water and fecal coliform. Waste water is expressed in million gallons per year (MGY) and fecal coliform in number per milliliter (#/ML).

57

. _____

FISHERIES

The absence of pollutant entries in the Fisheries sector reflects the severe lack of data encountered at the national as well as state and county levels. Some waste water, oil and grease, and solid waste are involved with Fisheries activities but are small and somewhat isolated from the eco-system of urban centers [25].

FORESTRY

<u>Air</u>

Technical data suggested the presence of particulates for the Forestry sector[25]. The South Carolina coefficient for combined Agriculture, Forestry, and Fisheries sectors was adapted to the Forestry sector of the Mississippi coastal region by the methodology of Section III-B as shown below.

<u>Particulates</u>

.023 x .290	Pounds per dollar [16] Forestry proportion category output (Appendix A)
.00667	Adjusted pounds per dollar
x <u>\$ 8126000</u>	Forestry output Mississippi (Appendix A)
27.133	Tons Mississippi coastal region

LIVESTOCK AND LIVESTOCK PRODUCTS

Water

Water effluent data for the Livestock sector were not practically available. Even though water useage is probably significant, a large proportion of total water is consumed rather than disposed as waste water.

<u>Air</u>

Livestock production is an agricultural category which emits particulates into the air. The procedure of Section III-B yielded .327 tons of particulates per year. Engineering data indicated this figure to be too low and recommended an allocation of the remaining tonnage between agricultural particulates available for the Livestock and Crops sectors of .25 and .75, respectively [25]. Thus, 25 percent of non-Forestry emissions were allocated to the Livestock sector as shown below. Total particulates were computed by applying the South Carolina coefficient to total output in all corresponding Mississippi agricultural sectors.

321.851Total Agricultural particulate tonnage [16]- 27.133Forestry particulates (See Sector 2)= 294.718Livestock and Crops particulatesx.250Livestock proportion [25]~ 73.680Total tons Livestock

<u>Solid</u>

Solid waste consists of dried animal manures and is derived below. The number of animals was multiplied by unit wet manure tonnage. The average dry percentage content of manure was then applied to give total tons of

dry manure.

_. .

Livestock Dry Solid Waste Mississippi Coastal Region 1977

Animal	Number of Animals ^a	Annual Wet Waste per Animal (Tons) ^b	Total Annual Wet Waste	Dry Weight Factor ^C	Total Animal Dry Waste
Beef Cattle Dairy Cattle Chickens (fryer) Hens (layers) Horses Hogs, pigs, sheep	10015 1649 603 88491 518 5250	10.900 14.600 .0064 .0670 12.0000 3.2000	109164 24075 4 5929 6216 7200	.15 .12 .30 .30 .15 .27	16374.6 2889.0 1.2 1778.7 932.4 1944.0
Total	103626	40.7734	1525 88	-	23919.9

a b c

[48] [42] [13],

CROPS AND OTHER AGRICULTURE

Water

Although the Crops sector is known to generate some quantities of water effluents such as sediment runoff and pesticides, quantifiable data were unavailable. Irrigation water was treated as waste water flow because it was deposited in the environment carrying effluent loadings. Irrigation water in acre feet was converted to million gallons per year as shown in the table below. Data for year 1974 were the latest available.

County	Irrigation Water ^a (acre feet year)	Irrigation Water	
Hancock Harrison	538 1	175.308 .326	
Jackson Total	- 539	175.634	

Irrigation	Water	Crops	and	Other	Agricu	lture
M:	ississi	ippi Co	pasta	al Regi	ion	
		ii 19)	77			

Air

Air pollution data for Crops are sketchy, but engineering sources indicated that crop production in the coastal region generates about 75 percent of non-Forestry particulates (see Livestock) [25]. Total tonnage of Crops particulates is derived below using unpublished MAWPCC data.

	321.851	Total Agricultural particulate tonnage [16	5]
-	27,133	Forestry particulates (See Sector 2)	
Ξ	294.718	Livestock and Crops particulates	
х	.750	Crops proportion [25]	
2	221.037	Total particulate tonnage Crops	

AGRICULTURAL, FORESTRY, AND FISHERIES SERVICES

The lack of data for all categories of pollution explains the zero entries in Agricultural, Forestry, and Fisheries Services. Although minimal sewage and vehicle emissions may be present, it was discovered that quantities in the Mississippi coastal region would be so insignificant that omission of probable categories was justifiable [25].

Application of the second s Second s Second se

· ···-

MINING

Water

Water effluents for the Mining sector were estimated with the methodology of Section III-A. One regional computer printout was processed for waste water and suspended solids using Equation 4 as shown below.

Waste Water^a

Sample	Sample Emp	MGY ^b	MGY/Emp	Weight
Region	5	14.4	2.880	1.0
Non-Region	-	-	-	-

a [23] Million gallons per year

 $\bar{X} = 2.880 \text{ MGY/emp}$ N = 220 X = NX = 633.6 MGY

Suspended Solids

Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region	5	5150.1	1030.02	1.0
Non-Region	-	-	-	-

[23]

X̄ = 1030.02 Lbs/emp N = 220 X̄ = NX̄ = 113.302 Tons/year

<u>Air</u>

The Non-Metallic Mining Sector of the South Carolina study corresponded exactly to the Mining sector of the Mississippi model. Thus, the South Carolina air coefficients were used without adjustment and converted to tons as discussed in Section III-B.

<u>Solid</u>

Solid waste tonnage was estimated using the methodology of Section III-C. The average daily industrial solid waste factor was applied to sector employment and converted to an annual basis.

220	Mining employment (Appendix A)
x .65	Solid waste lbs/emp [42]
= 0715	Tons solid waste/day
x 300	Days/industrial year
=21.45	Tons solid waste/year

CONSTRUCTION

Water

Water effluents and waste water flow for the Construction sector were estimated from a printout which covered the construction phase of a chemical plant in the region [23]. No employment data for the construction were available, and specific construction companies were not monitored. Because the types of effluents listed on the printout were not typical of all construction activity, the single printout was processed as discussed in Section III-A and entered as a proxy for sector loadings without adjusting for sector employment. In this way, zero entries common to many studies were avoided while hedging against an excessive sector allocation.

<u>Air</u>

The absence of air pollution data reflects the lack of data in studies from which coefficients were adapted. In addition many obstacles were encountered in using construction equipment and EPA factors because most construction vehicles were not registered with the state highway department.

<u>Solid</u>

Solid waste was estimated by applying a demolition-construction

waste factor to sector employment. This procedure is described below.

.

	6471	Construction employment (Appendix A)
X	.23	Solid waste lbs/emp [42]
۳	.7742	Tons solid waste/day
X	300	Days/industrial year
~	223.5	Tons solid waste/year

FOOD PROCESSING

<u>Wate</u>r

Regional water effluent samples for Food Processing covered about 57 and 62 percent of regional establishments and employees, respectively (Table 1, Section III-A). Product supplementation was needed because only seafood processors were included in the regional sample. A study of the remaining 15 firms revealed the following categories with respect to water effluent loadings: dairies, packing houses, and beverages. A review of effluent printouts for other regions of the state resulted in the selection of three firms to the non-regional sample. They covered the following SIC product classifications corresponding to uncovered product categories: 2011, 2086, and 2026.

Many data problems were encountered in the regional sample, e.g., missing data and unreported effluent values. Missing water flow rates were estimated with average flow per employee of known firms. Equation 2 of Section III-A was used to estimate missing effluent values, and consulting engineers provided data on firms which utilized municipal facilities rather than their own monitored plants [8]. Regional and non-regional firms were processed and effluents estimated using Equation 4 of Section III-A as summarized by the following computations.

<u>Waste Water^a</u>

. ...

Sample	Sample Emp	MGY ^b	MGY/Emp	Weight
Region	1591	5919.870	3.720849	.76
Non-Region	512	97.635	.190693	.24
x = x = n =	a [23] b [23] Million ga (.76) (3.7208 2.873611 MGY/ 562 519.870 + NX	349) + (.24) 'emp	(.190693)	

<u>BOD</u>

Sample Region Non-Region	Sample Emp 718 512	L bs 427246 11546	Lbs/Emp 594.9109 22.5508	Weight .58 .42
	[23]			
<u>x</u> =	: (.58) (594.910	9) + (.42)	(22.5508)	

$$X = (.58) (594.9109) + (.42) (22.5508)$$

 $X = 354.5196$ Lbs/emp
 $N = 1435$
 $X = 427146 + N\overline{X} \simeq 467.941$ Tons

<u>Chlorine</u>

Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region	525	3.085	5.8762	.57
Non-Region	400	117	.2925	.43
	[23]			

 $\bar{X} = (.57) (5.8762) + (.43) (.2925)$ $\bar{X} = 3.4752 \text{ Lbs./emp}$ N = 1628 $X = 3085 + N\bar{X} \approx 4.372 \text{ Tons}$

Fecal Coliform (#/ML)

Sample Region Non-Region		Sample Emp 283 -	Lbs 253218.00 -	Lbs/emp 8 9476. 325 -	Weight 1.0 -
	[23]				
	1	k = 89476.325/M N = 2153 X = NX ≈ 192642			
		Suspended So	lids		
Sample Region Non-Region		Sample Emp 708 512	Lbs 431216 26499	Lbs/Emp 609.0621 51.7559	Weight .58 .42
	[₂₃]				
		$\bar{X} = (.58)(609.0)$ $\bar{X} = 825.777$ lbs N = 1445 $X = 431216 + N\bar{X}$;/emp		
		<u>Settleable S</u>	Solids		
Sample Region Non-Region		Sample Emp 813 -	Lbs 319602 -	Lbs/Emps 393.1144 -	Weight 1.0 -
	[<u>2</u> 3]				
		X = 393.1144 N = 2153 X = NX ≃ 423.			
		Nitroge	<u>n</u>		
Sample Region Non-Region		Sample Emp 283 112	Lbs 84675 769	Lbs/Emp 299.2049 6.8661	Weight .72 .28
	[23]				
		X = 194.5027 N = 2153 X = NX ≃ 209.			

. .. _____

Oil and Grease

Sample Region Non-Region		Sample Emp 185 -	Lbs 35,983 -	Lbs/Emp 194.5027 -	Weight 1.0 -
	[23]				
		x̃ = 194.5027 N = 2153 X = Nx̃ = 209	•		

Air

Air pollution coefficients were taken directly from the South Carolina Food and Kindred Products sector which corresponded to the Food Processing sector of the Mississippi model. Multiplying the appropriate output yielded the following tonnages of air pollution.

Nitrogen oxides	160.014 tons	Particulates	80.007 to ns
Sulfur oxides	810.204 tons	Aldehydes	6.934 tons
Carbon Monoxide	6.934 tons	Hydrocarbons	6.934 tons

Solid

Solid wastes were estimated by averaging all subcategories of food processors listed in the engineering study and multiplying by sector employment. All categories were included in Mississippi coastal production.

Food Processing Solid Waste Factors

SIC	Industry	Solid waste/emp/year/(tons)
201	Meat processing	6.2
2033	Cannery	55.6
2037	Frozen foods	18.3
Other 203	Preserved foods	12.9
Other 20	Food processing	5.8
20	Average sector	19.76

Source: [42]

2153 Food Processing employment (Appendix A) <u>19.76</u> Tons/emp/year [42]

x 19.75 lons/emp/y ≈ 42543.28 Tons/year

APPAREL AND OTHER FINTSHED PRODUCTS

Water

The Apparel sector required total supplementation for water effluents because of the absence of monitoring printouts. Two Mississippi firms producing SIC products 2327 and 2254 were selected as a proxy for coastal firms in the non-regional samples. Both categories were significant to coastal production. One non-regional firm had to be processed using Equation 2 of Section III-A. Final tonnages are summarized in the following computations using Equations 3 and 4 of Section III-A.

Waste Water^a

Sample Region Non-Region	Sample Emp 820	MGY ^b 154.43	MGY/Emp - . 188329	Weight _ 1.0
	a [23] b Million gall	lons per yea	ir	
N =	.188329 MGY/eπ 1745 NX ≃ 328.634	0		

80D

Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	270	2042	7.748	1.0

 \vec{X} = 7.748 Lbs/emp N = 1745 X = NX = 6.76 Tons

[23]

	<u>Ch</u>	lorine		
Sample Region Non-Region	Sample Emp 550 [23]	Lbs - 85	Lbs/Emp .1545	Weight 1.0
	x̄ = .1545 N = 1745 X = NX ≃ .	•		
	Suspend	led Solids		
Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	270	- 6467	23.9519	1.0
	[23]			
	x̄ = 23.951 N = 1745 X = NX ≃ 2	9 Lbs/emp 20.885 Tons		
	Ni	trogen		
Sample Region Non-Region	Sample Emp 270	Lbs - 695	Lbs/Emp 2.57411	Weight _ 1.0
	[23]			
	X = 2.574] N = 1745 X ≠ NX ≃ 2			
		<u>Zinc</u>		
Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	550	423	.7691	1.0
	[23]			
	$\bar{v} = \bar{v}$	16- (

X = .7691 Lbs/emp N = 1745 X = NX ≈ .671 Tons

	<u>C</u>	nromium_		
Sample Region Non-Region	Sample Emp 550	Lbs _ 423	Lbs/Emp .7691	Weight _ 1.0
[[23] X = .7691 N = 1745 X = NX ≃ .	-		

<u>Air</u>

Air pollution tonnages for the Apparel sector were estimated with the procedure of Section III-B for sectors which correspond exactly to Mississippi Coastal sectors [16]. Coefficients were multiplied by Apparel output of the Mississippi coastal region.

<u>Solid</u>

The solid waste factor for the Apparel category of the engineering study was applied to Apparel employment to estimate solid wastes.

1745 = Apparel Employment (Appendix A) $\frac{x}{.31}$ = Tons solid waste/emp/year [42] = 540.95 = Tons/year

LUMBER AND WOOD

<u>Water</u>

Water effluent quantities for Lumber and Wood were derived with regional and non-regional MAWPCC samples by Equations 3 and 4 of Section III-A. The regional sample of 2 firms covered only 32 percent of sector employment (Table 1, Section III-A) and both firms were engaged in creosoting operations. Product supplementation was undertaken to cover effluents discharged by firms producing such lumber products as kiln-dried southern pine, trim veneer, and finished lumber.

Waste Water^a

Sample Region Non-Region	Sample Emp 43 233	MGY ^Ð .24 242.775	MGY/Emp .005580 1.041953	Weight .16 .84
	a [23] b Million gallons	per year		
$\bar{X} = (.16) (.005580) + (.84) (1.041953)$ $\bar{X} = .876134 \text{ MGY/emp}$ N = 355 $X = .24 + N\bar{X}$ X = 311.268 MGY				

BOD					
Sample	Sample Emp	Lbs	Lbs/Emp	Weight	
Region	129	7248	56	.36	
Non-Region	233	94377	405	.64	

- - -

[23]

 $\bar{X} = (.36) (56) + (.64) (405)$ $\bar{X} = 280 \text{ Lbs/emp}$ N = 269 $\bar{X} = 7248 + N\bar{X} \simeq 41.284$ Tons

77

Suspended Solids

Sample Posice	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	233	7974 2	342.24	1.0
ĺ	23]			
	x̄ = 342.24 N = 398 X = Nx̄ ≃ 68	·		
	Nit	rogen		
Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	- 83	5414	65.22	1.0
([23]			
	x = 65.22 L N = 398 X = NX ≃ 12	-		
	<u>0i1</u>	and Grease		
Sample Region Non-Region	Sample Emp 129 150	Lbs 177 15600	Lbs/Emp 1.37 104.00	Weight .46 .54
	[23]			
	X = 56.79 L N = 269	(1.37) + (.5 .bs/emp IX ≃ 7.727 T		
			UIIS	
		enols	Lbc (Emp	Weight
Sample Region Non-Region	Sample Emp 129 150	Lbs 111 105	Lbs/£mp .86 .70	.46 .54
	[23]			

 $\bar{X} = (.46) (.86) + (.54) (.7)$ $\bar{X} = .7736$ Lbs/emp N = 269 $\bar{X} = 111 + N\bar{X} \simeq .160$ Tons

<u>Air</u>

Air pollution quantities were estimated from Lumber and Wood air coefficients of the South Carolina study [16]. Multiplying the coefficients by Mississippi Lumber and Wood output yielded the tonnages listed in Table 1, Section IV.

<u>Solid</u>

Solid waste factors for the SIC categories of Lumber and Wood were averaged and applied to sector employment as shown below.

Lumber and Wood Solid Waste Factor				
SIC	Industry	Tons/Employed/Year		
2421 Other 24 Total 24	Sawmills and planing mills Wood products Average sector	162.0 10.3 86.15		

[42]

398 = Lumber and Wood employment (Appendix A) x 86.75 = Tons solid waste/emp/year [42] 3428.70 = Tons/year

PAPER AND ALLIED

<u>Water</u>

The regional sample of the Paper and Allied sector provided complete sector coverage as shown in Table 1, Section III-A. Thus, the processed sector worksheets covered 100 percent of sector employment so that allocation and supplementation were not necessary. The regional printouts generated the following Paper and Allied water effluent loadings. Although paper production would appear to entail other significant loadings, printouts of similar firms in other areas of Mississippi listed similar effluent categories.

Paper and Allied Water Effluents

Effluent	Tons/year ^a
Waste Water	7245 ^b
BOD	473
Suspended Solids	1383

a [23] b [23] MGY

<u>Air</u>

Air pollution coefficients for the Pulp and Paper sector of the South Carolina study correspond to the Paper and Allied sector of the Mississippi study. Sector output for Mississippi Paper and Allied was multiplied by the appropriate air pollution coefficients to yield air pollution in Table 1, Section IV.

Solid

The solid waste factor for Paper and Allied was applied to sector employment to yield total solid waste, as shown below.

> 1326 = Paper and Allied employment (Appendix A) $\frac{x - 2}{2652}$ = Tons solid waste/emp/year [42] 2652 = Tons/year

PRINTING AND PUBLISHING

<u>Water</u>

Neither regional nor non-regional MAWPCC printouts were available for Printing and Publishing. Other studies gave zero values to effluent categories of Printing and Publishing[16], [17], [52]. Waste water flow, primarily consisting of sewage, was estimated however by multiplying average per-capita waste water discharge by sector employment (See Households, Appendix C for per-capita waste water).

> 433 = Printing and Publishing employment (Appendix A) $\frac{x \quad 50}{21,650}$ = Gallons/emp/day (Appendix B, Households) $\frac{x \quad 300}{6.495}$ = Industrial year $\frac{6.495}{1000}$ = Million gallons/year (MGY)

<u>Air</u>

Sulfur oxide emissions were estimated with air coefficients of the South Carolina Printing and Publishing sector by the methodology of Section III-B. Computations are given below. Unpublished engineering data provided the basis for estimating hydrocarbons, given the three county area and total employment [25].

Sulfur Oxides

\$ 7,782,000 = Printing and Publishing Output (Appendix A)
x .00007 = Pounds/dollar, South Carolina [16]
544.74 = Pounds/year, Mississippi
÷ .2000 = Pounds/ton
.273 = Ton/year

81

÷.,

<u>Solid</u>

Printing and Publishing solid waste engineering factors were applied to sector output to derive solid waste tonnage, as shown below.

433 = Printing-Publishing employment (Appendix A) $\frac{x \quad .49}{212.17} = Tons \ solid \ waste/emp/year \ [42]$

CHEMICALS, PETROLEUM, REFINING, AND RELATED PRODUCTS

<u>Water</u>

Water effluent tonnages for the Chemicals, Petroleum Refining, and Related sector were estimated with Equations 3 and 4 of Section III-A. Table 1 of Section III-A indicates that 50 percent and 91 percent of total firms and employment, respectively, were covered by the regional sample. Although this would appear to be quite adequate, five SIC product categories were not covered. A non-regional sample was constructed with four firms covering SIC 2821 and SIC 2852. These two categories involved production processes similar to the uncovered sector. The results are given below.

Waste Wa<u>ter^a</u>

Sample Region Non-Region	Sample Emp 1834 431	MGY ^b MGY/Emp 11838.56 6.455049 569.8066 1.322057	Weight .81 .19
	a b[23] Million gallons	per year	
	$\bar{X} = 5.479$ N = 189	.455049) + .19(1.322057) 781 MGY/emp .56 + NX ≃ 12874.239 MGY	

		BOD		
Sample Region Non-Region	Sample Emp 1688 666	Lbs 374790 227442	Lbs/Emp 222.032 341.505	Weight .72 .28
	[23]			

 $\bar{X} = .72(222.032) + .28(341.505)$ $\bar{X} = 255.484$ lbs/emp N = 335 $\chi = 374790 + NX \simeq 230.19$ Tons COD Weight Lbs/Emp Lbs Sample Emp Sample . 35 280.25294 95286 340 Region .65 978.67969 626355 640 Non-Region [23] $\bar{X} = (.35)(280.25294) + (.65)(978.67969)$ $\bar{x} = 734.23$ N = 1683 $X = 95286 + NX \approx 665.498$ Tons Fecal Coliform (#/ML) Weight Lbs/Emp LDS Sample Emp Sample. 3.4947 1.0 650.01 186 Region -Non-Region -[23] $\bar{\chi} = 3.4947/ML/emp$ N = 2023 $X = NX \approx 7069.778/ML$ Suspended Solids Weight Lbs/Emp Lbs Sample. Sample Emp .73 1123500 612.5954 Region 1834 117.5931 .27 78317 Non-Region 666 [23] $\bar{X} = .13(612.595) + .27(117.593)$ X = 478.945 Lbs/emp N = 189 $X = 1123500 + N\bar{X} \approx 607.011$ Tons Nitrogen Weight Sample Lbs/Emp Sample Emp Lbs. .74 Region 163.9602 1456 238726 9.1468 .26 Non-Region 511 4674

 $\bar{X} = .74(163.9602) + .26(9.1468)$ $\bar{X} = 121.9488$ Lbs/emp N = 567X = 238726 + NX ≈ 153.936 Tons 0il and Grease Weight Lbs/Emp Sample Emp Lbs Sample 115.302 1.0 173991 1509 Region ---_ Non-Region [23] $\bar{X} = 115.302$ Lbs/emp N = 2023 $X = N\bar{X} \simeq 116,628$ Tons Phenols Weight Lbs/Emp Lbs Sample Emp Sample 1.Ō .3099 216 697 Region -_ -Non-Region -[23] \bar{X} = .3099 Lbs/emp N = 2023 $\chi = N\overline{X} \simeq .314$ Tons Sulfides Weight Lbs/Emp Lbs Sample Emp Sample 1.0 1.7905 1581 883 Region ---Non-Region -[23] $\bar{X} = 1.7905 \text{ Lbs/emp}$ N = 2023 $X = N\bar{X} \approx 1.811$ Tons Flouride weight Lbs/Emp Lbs Sample Emp Sample 1.0 253.4483 147000 580 Region ---Non-Region [23] $\bar{\chi} = 253.4483$ Lbs/emp N = 2023

 $X = NX \approx 256.363$ Tons

-

Heavy	Metal	5

Sample Region Non-Region		Sample Emp 580 -	Lbs 7500 -	Lbs/Emp 12.931 -	Weight 1.0 -
	[23]				
		X ≈ 12.031 Lbs/ N = 2023 X = NX ≃ 13.080			
		<u>Cadmium</u>			
Sample Region Non-Region		Sample Emp 580 -	Lbs 330 -	Lbs/Emp .569 -	Weight 1.0 -
	[23]				
		X = .569 Lbs/eπ N = 2023 X = NX ≃ .576 1			
		Iron			
Sample Region Non-Region		Sample Emp 580 ~	Lbs 27030 -	Lbs/Emp 45.9694 -	Weight 1.0 -
	[23]				
		X̃ = 45.9694 Lbs N = 2023 X = NX̃ ≃ 46.498			
		<u>Chromium</u>			
Sample Region Non-Region		Sample Emp 805 -	Lbs 498	Lbs/Emp .6186 -	Weight 1.0 -
	[23]				
		X = .6186 Lbs/ N = 2023 X = NX ≃ .626			

Air

Air pollution coefficients of the South Carolina study for Chemicals and Allied Products were adapted to the corresponding Mississippi coastal sector using the non-household methodology of Section III-B. The results thus obtained for sulfur oxides, hydrocarbons, and aldehydes were adjusted substantially based upon unpublished regional data [25]. Final results are summarized below in tons per year.

Nitrogen oxide 3526.913 Sulfur oxides 1600.000 Carbon Monoxide 7.622	Particulates 82.567 Aldehydes 7.623 Hydrocarbons 381.077	•
--	--	---

Solid

Solid waste factors for three categories of SIC 28 listed in the engineering study were averaged as shown below to coincide with the Mississippi coastal category. The averaged per-employee waste factor was then applied to sector employment to give total solid waste tonnage.

Chemical-Petroleum-Related Solid Waste Factor

SIC	Industry	Solid Waste/Emp/Year(tons)
281 28-other 29	Basic Chemicals Chemical and Allied Petroleum	10.000 _630]4. 800
28-29	Average sector	8.477

[42]

2023 = Chemical-Petroleum employment (Appendix A) x 8.477 = Solid waste tons/emp [42] 17148.971 = Tons/year

STONE, CLAY AND GLASS

<u>Water</u>

Water effluents were estimated with Equations 3 and 4 of Section III-A. Product supplementation was necessary even though 60 percent of sector employment was covered (Table 1, Section III-A) because regional sample firms included only glass manufacturing. A non-regional sample was constructed with three firms covering ready-mixed concrete (SIC 3273), glazed ceramic tile (SIC 3253), and sand and gravel processing (SIC 3295). Computations of effluent tonnages are presented below.

Waste Water^a

Sample Regional Non-Regional	Sample Emp 460 325	MGY ^b 3116.49 84.03	MGY/Emp 6.774978 .258554	Weight .59 .41
^a [23] bMillion gallons per year				
\vec{X} = (.59) (6.774978) + (.41) (.258554) \vec{X} = 4.103244 MGY/emp N = 302 \vec{X} = 3116.49 + NX \vec{X} \approx 3240.408 MGY				
		Chlorine		
Sample Region Non-Region	Sample Emp 300 -	Lbs 7.4	Lbs/Emp .0247	Weight 1.0 -

[23]

		Lbs/emp 010 Tons/yea nded Solids	r	
Sample Region Non-Region	Sample Emp. 460 325	Lbs. 901962 33770	Lbs/Emp 1960.7870 103.9077	Weight .59 .41
	[23]			
	X = 1199.4 N = 302 X = 901962	665 Lbs/emp	(.41) (103.9077)	
	0il	and Grease		
Sample Region Non-Region	Sample Emp. 160 -	Lbs 5418 -	Lbs/Emp 33.8625 -	Weight 1.0 -
	[23]			
	N = 762	25 Lbs/emp 12.902 Tons/j	year	

<u>Air</u>

South Carolina coefficients for Stone, Clay and Glass corresponded to the Mississippi coastal sector and were multiplied by Mississippi sector output to yield annual tonnages. Results are given below in tons.

Nitrogen Oxides	117.970	Particulates	1091.850
Sulfur Oxides		Aldehydes	1.632
Carbon Monoxide	1.632	Hydrocarbons	1.632

<u>Solid</u>

The engineering solid waste factor for Stone, Clay, and Glass was applied to sector employment to estimate solid waste tonnages. Calculations are listed below.

> 762 = Stone, Clay and Glass employment (Appendix A) = $\frac{x - 2.4}{1828.8}$ = Tons/emp/year [42]

PRIMARY AND FABRICATED METALS

Water

Water effluent tonnages were derived with Equations 3 and 4 of Section III-A using regional and non-regional samples. The fabricated metal industry in particular is a very large and diverse sector on the Mississippi Gulf Coast, producing many SIC product categories. The regional sample covered only 9 and 13 percent of total firms and employment, respectively, as shown in Table 4 of Section III-A. Furthermore, all but a fraction of regional sample employment was aluminum fabrication not typical of overall coastal activity. A non-regional sample of 8 firms was drawn representing all uncovered SIC product categories. Emphasis was given SIC 3440 through SIC 3470. It is noted that some firms in the non-regional sample made products not exactly the same as those of coastal industries, but which entailed essentially the same production processes and waste residuals. Final sector estimates from regional and non-regional sector worksheets are given below.

Waste Water^a

Sample	Sample	•	MGY ^b	MGY/Emp	Weight
Region	267		128.07	_479663	.09
Non-Region	2670		1136.978	_425834	.91
	a [23] bMillion	gallon	s per year		

	$\overline{X} = .09(.47)$ $\overline{X} = .430679$ N = 3090 X = 128.07 $X \simeq 1458.86$	+ NX	.425834)	
Sample	Sample Emp	Lbs	Lbs/Emp	Weight
Region	-	39	.0305	1.0
Non-Region	1280	, , , , , , , , , , , , , , , , , , ,	.0000	
[2	23]			
	X = .0305 I N = 3351 X = NX ≃ .(-		
	CI	hlorine		
Sample		Lbs	Lbs/Emp	Weight
Region Non-Region	95 1310	40 662	.4211 .5053	.48 .52
-				
Ľ,	23]	x	5053)	
	Suspe	nded Solids		
Sample Region Non-Region	Sample Emp 17 2 1339	Lbs 1172 31.110	Lbs/Emp 6.814 23.234	Weight .11 .89
	[23]			
	X = 21.43 N = 3179	814) + .89(2 Lbs/emp • NX ≃ 34.469		
	<u>^</u>	litrogen		
Sample Region Non-Region	Sample Emp 15 ~	Lbs 161	Lbs/Emp 10.733 -	Weight 1.0 -
	[23]			

[23]

Sample Region Non-Region	$N = 3351$ $X = N\overline{X} =$ $0i1$ Sample Emp $\overline{445}$ [23] $\overline{X} = 10.1$	33 Lbs/emp 17.983 Tons and Grease Lbs 4502	Lbs/Emp 10.117	Weight 1.00
	N = 3351 X = NX ≃	16.951 Tons		
	P	hosphates		
Sample Region	Sample Emp	Lbs -	Lbs/Emp -	Weight -
Non-Region	300	1254	4.18	1.0
	[23]			
	N = 3351	Lbs/emp 7.004 Tons		
		Zinc		
Sample Region Non-Region	Sample Emp 95 1710	Lbs 33 911	Lbs/Emp .3474 .5328	Weight .05 .95
	[23]			
		· NX	(.5328)	
		Cadmium		
Sample Region	Sample Emp	Lbs	Lbs/Emp	Weight
Region Non-Region	10 [23]	9	.9	1.0
	X = .9 L N = 3351	bs/emp 1.508 Tons		

		Iron		
Sample	Sample/Emp	Lbs	Lbs/Emp	Weight
Region	785	1362	- 1.735	1.0
Non-Region				
ł	23]	1 725 lbc / mn		
	N =	1.735 Lbs/emp 3351 NX ≃ 2.907 Tor	15	
		Chromium		
Sample	Sample/Emp	Lbs	Lbs/Emp .4	Weight .04
Region Non-Region	95 2395	38 591	2468	.96
-	[23]			
	X = N = X =	.04(.4) + .96 .2529 Lbs/emp 3256 38 + NX .431 Tons		
		Aluminum		
Sample	Sample/Emp	Lbs	L b s/Emp	Weight
Region Non-Region	- 785	- 3481	4.434	1.0
	[23]			
	N =	4.434 Lbs/em) 3351 NX ≃ 7.429		
		Copper		
Sample	Sample/Emp	Lbs	Lbs/Emp	Weight -
Region Non-Region	- 795	369	. 4642	1.0
	[23]			
	N =	= .4642 Lbs/em = 3351 = NX ≃ .778 To		

		HICKEI		
Sample Region	Sample Emp	Lbs	Lbs/Emp	Weight -
Non-Region	1085	1124	1.0359	1.0
	[23]			
	N = 335	359 Lbs/emp l ≃ 1.736 Tons		

<u>Air</u>

The South Carolina study contained separate Primary Metals and Fabricated Metals sectors, necessitating the use of Equation 6 in Section III-8. However, there were no emissions listed under the primary category so that the remaining fabricated sector corresponded exactly to the Mississippi sector. Coefficients of the South Carolina Fabricated Metals sector were multiplied by Mississippi coastal output and converted to tons. Data for nitrogen oxide and particulates were adjusted based upon unpublished data [25]. Results in tons per year are listed below.

Nitrogen oxide	77.500	Particulates	300.000
Sulfur oxides	77.702	Aldehydes	.698
Carbon Monoxide	.698	Hydrocarbons	. 698

<u>Solid</u>

The solid waste engineering factors for Primary Metals and Fabricated Metals were averaged and applied to Mississippi coastal Primary and Fabricated Metals employment. The procedure is given below.

SIC	Industry	Solid Waste/Emp/Year(Tons)
34	Primary Metals	24.0
35	Fabricated Metals	1.7
34 & 35	Average Sector	12.85

Primary-Fabricated Solid Waste Factor

Source: [42]

Nickal

3351 = Primary-Metal employment (Appendix A) x = 12.85 = Tons/emp/year [42] 43060.35 = Tons/year

•

TRANSPORTATION EQUIPMENT

Water

Water effluent tonnages for Transportation Equipment were estimated with Equation 4 of Section III-A. No supplementation was needed because 96 percent of Sector employment was covered in the regional sample as shown in Table 1, Section III-A. Other small firms were engaged in similar production processes. Final results of the sector estimation are summarized below. Here, N equals total sector employment.

Waste Water

X ≃ 14.1017 MGY/emp N = 23033 X = NX ≃ 324804.46 MGY
[23]
BOD
X = 3.1828 Lbs/emp N = 23033 X = NX ≃ 36.655 Tons
[23]
Chlorine
X = .1377 Lbs/emp N = 23033 X = NX ≈ 1.586 Tons
[23]

Fecal Coliform (#/ML) $\bar{X} = 1.0438 / ML/emp$ N = 23033 $X = NX \approx 24041.845/ML$ [23] Suspended Solids X = 4.1132 Lbs/emp N = 23033 $X = N\overline{X} \simeq 47.37$ Tons [23] Oil and Grease \bar{X} = .0610 Lbs/emp N = 23033 $X = N\bar{X} \simeq .703$ Tons [23] **Phosphates** \bar{X} = .0235 Lbs/emp $N \approx 23033$ $X = N\overline{X} \simeq .271$ Tons [23] Zinc \bar{X} = .1882 Lbs/emp N = 23033 $X = N\bar{X} \simeq 2.168$ Tons [23] Chromium $\bar{X} = .0094$ Lbs/emp N = 23033 $X = NX \approx .109$ Tons [23]

<u>Air</u>

Using the methodology of Section III-B, air coefficients of the South Carolina Transportation Equipment sector were applied directly to Mississippi output to derive total emissions tonnages. The results yielded large quantities of nitrogen oxide and sulfur oxides as shown below.

-

Nitrogen Oxide

\$659083000 = Transp. Equip output Mississippi (Appendix A) x = .007 = Lbs/dollar [16] = 4613581 = Lbs Mississippi $\div = 2000$ = Lbs/Ton = 2306.791 = Tons Sulfur Oxides \$659083000 = Transp. Equip. output Mississippi (Appendix A) x = .000354 = Lbs/dollar [16] 233315.38 = Lbs Mississippi $\div = 2000$ = Lbs/Ton

≃ 116.658 = Tons

<u>Solid</u>

The solid waste factor for Transportation Equipment was applied to sector output to derive solid waste tonnage. Computations are presented below.

> 23033 = Transportation Equipment employment (Appendix A) <u>x 1.3</u> = Tons Solid waste/emp/year [42] 29942.9 = Tons/year

MISCELLANEOUS MANUFACTURING

<u>Water</u>

As shown in Table 1 of Section III-A, intensive supplementation for the Miscellaneous Manufacturing sector was necessary since no data were available for regional firms. One regional printout was published but contained no actual data values.

A non-regional sample of nine miscellaneous manufacturing firms in other regions of the state was drawn. Every effort was made to include only firms which produced the same products as firms in the coastal area. While this objective was met for the most part, some substitution of products with similar production processes was necessary because of the heterogeneous nature of the products manufactured by this diverse sector. The final sample reflected a representative profile of the SIC structure for the industry in the region. Final sector effluent estimation is summarized in the following table using the symbols of Equation 4, Section III-A.

Effluent	Sample Empa	Lbs Pollutant ^a	X	N	χσ
Waste Water	3243	258.3917 ^b	.079677	1090	86.848 ^b
BOD	1693	6577	3.8848	1090	2.117
Chlorine	1550	79.1	.0510	1090	.028
Fecal Coliform	300	1583.27	5.2776	1090	5752.584
Susp Solids	1993	20527	10.2995	1090	5.613
Nitrogen	693	1168	1.6854	1090	. 919
Oil & Grease	1607	3424	2.1307	1090	1.161
Phenols	600	2	.0033	1090	. 002

Water Effluents Miscellaneous Manufacturing

Zinc Iron Chromium Lead	1850 1450 900 100	30 16 20.5 14	.0162 .0110 .0228 .14	1090 1090 1090 1090 1090	.009 .006 .013 .077
----------------------------------	----------------------------	------------------------	--------------------------------	--------------------------------------	------------------------------

^a[23] ^bMillion gallons per year (MGY) ^CTons per year d#/ML

Air

The South Carolina study contained more sectors in the given miscellaneous manufacturing category than the corresponding regional sector. The non-household methodology of Section III-B incorporating Equation 6 was used to estimate air emissions. The sector estimation is detailed in the following calculations. Total tonnage is equal to X.

Nitrogen Oxide

SIC	Lbs/Dollar	Dollar Output	Ts (Tons)
22 25 35 36	.016 .0022 .016 .0014	275,998,859 43,236,115 8,025,953 50,930,519	2,207.99 47.56 64.21 35.65
Total		378, 191, 446	2,355.41

Source: [16]

 $X = \frac{(2355.41)(\$30676000)}{\$378191446} \approx 191.053 \text{ Tons}$

Sulfur Oxides	Su	11	fur	0x	i des
---------------	----	----	-----	----	-------

<u>SIC</u>	Lbs/Dollar	Dollar Output	Ts (Tons)
22 25 35 <u>36</u>	.012150 .006580 .000710 .000121	275,998,859 43,236,115 8,025,953 50,930,519	1,676.693 142.247 2.849 3.081
lotal		378,191,446	1.824.87

Source: [23]

$$X = \frac{(1824.87)(\$30676000)}{\$378191446} = 148.027 \text{ Tons}$$

Carbon Monoxide

<u>SIC</u>	Lbs/Dollar	Dollars Output	Ts (Tons)
22	.0001	275,998,859	138.00
25	.00006	43,236,115	1.30
35	.00001	8,025,953	.04
36	.000001	50,930,519	.03
39	.000003	2,013,396	.01
Total		380,204,842	139.38

Source: [16]

 $X = \frac{(139.38)(\$30676000)}{\$380204842} \approx 11.246 \text{ Tons}$

Particulates

<u>SIC</u>	Lbs/Dollar	Dollars Output	Ts (Tons)
22	.0012	275,998,859	165.60
25	.00064	43,236,115	13.84
35	.051	8,025,953	204.66
35 36	.00001	50 ,930, 519	.25
39	.00004	2,013,396	.04
Total		380,204,842	384.39

Source: [16]

 $X = \frac{(384.39)(\$30676000)}{\$380204842} \simeq 31.014 \text{ Tons}$

Aldehydes

SIC	Lbs/Dollar	Dollars Output	Ts (Tons)
22 25 35 36 39	.0001 .00006 .00001 .000001 .000003	275,998.859 43,236,115 8,025,953 50,930,519 2,013,396	13.80 1.30 .04 .03 .01
Total	-	380,204,842	15.18

Source: [16]

$x = \frac{(15,18)(\$30676000)}{\$380204842} \simeq 1.225 \text{ Tons}$

Нус	irocarbon	S
-----	-----------	---

SIC	Lbs/Dollars	Dollar Output	Ts (Tons)
22	.0001	275,998,859	13.80
25	. 00006	43,236,115	1.3
35	.00001	8,025,953	.04
36	.000001	50,930,519	.03
35 36 39	.000003	2,013,396	.01
Total	-	380,204,842	15.18

Source: [16]

 $X = \frac{(15.18)(\$30676000)}{\$380204842} \approx 1.225 \text{ Tons}$

<u>Solid</u>

Solid waste engineering factors per employee for SIC categories corresponding to the Mississippi Miscellaneous Manufacturing sector were averaged and multiplied by sector employment. Solid waste estimation is summarized below.

SIC	Industry	Solid Waste/Emp/Year(Tons)
22	Textiles	.26
25	Furniture	. 52
30	Rubber-plastic	2.60
31	Leather	,17
35	Nonelectrical mach.	2.60
36	Electrical mach.	1.70
38	Instruments	. 12
38 39	Misc. mfg.	.14
Total	Average sector	1.01

[42]

	1090	=	Miscellaneous	Mfg.	employment	(Appendix	A)
х	1.01	=	Tons/emp/year				
=	1100.9	=	Tons/year				

WATER TRANSPORTATION

<u>Water</u>

The commercial methodology of Section III-A was used to estimate Water Transportation effluent loadings. Waste water flow factors as shown in Table 2 of Section III-A were not available for the Water Transportation sector, necessitating the substitution of average percapita water use (see Appendix B, Households). Waste water flow is given below.

> 1167 = Water Transportation employment (Appendix A) x 50 = Gallons per-capita waste water/day (Appendix B) 58350 = Gallons/day x 300 = Days/year = 17.5 = Million gallons/year (MGY)

Waste water flow of 17.5 MGY was applied to net medium effluent concentrations as illustrated in Table 3 of Section III-A to allocate water effluent tonnages contained in waste water flow. Calculations are summarized below.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ MGY (lbs) ^b	Conversion (1bs/gal) ^C	Annual Tonnage
BOD	17.5	30	-	8.34	2.190
Chlorine	17.5	-	3.478		.031
Fec. Coliform		-	2.80	-	49.000 ^d
Sus. Solids	17.5	30	_	8.34	2.190
Nitrogen	17.5	6	-	8.34	.438
Oil & Grease	17.5	15	-	8.34	1.095

Water Transportation Effluents

a_[20] b_[23] cWeight of l gallon water d#/ML

<u>Air</u>

The South Carolina study aggregated all transportation into one Transport and Storage sector. The non-household methodology of Section III-B was used in the following computations to allocate total air emissions to Water Transportation. Total tonnage was found by multiplying the adjusted coefficient (pounds per dollar) by Mississippi Water Transportation output.

<u>Mississippi</u>	Output	Percent	
Water Transportation	\$30,635,000	46	
Other Transp. & Warehousing	36,686,000	54	

Air Pollutant	Lbs/Dollar	Adj. Miss. Coefficient	Tonnage
Nitrogen Oxide	.013	.00598	91.599
Sulfur Oxide	-	-	. -
Carbon Monoxide	.020	.00920	140.921
Particulates	.019	.00874	133,874
Aldehydes	.003	.00138	21.138
Hydrocarbons	.004	.00184	28.184

Water Transportation Air Emissions

Sources: [16]

Solid

The commercial average per-capita solid waste factor for urban areas was applied to sector employment to give tonnage of solid waste. Total pounds were converted to tons as shown below.

 $\frac{1167}{x} = \text{Water transportation employment (Appendix A)} \\ \frac{x}{536.82} = \text{Pounds/day/employee [42]} \\ \frac{x}{536.82} = \text{Pounds/day} \\ \frac{x}{300} = \text{Days/year} \\ = 80.523 = \text{Tons/year} \\ \end{array}$

OTHER TRANSPORTATION AND WAREHOUSING

<u>Water</u>

The commercial methodology of Section III-A was used to derive Other Transportation effluent loadings. Average per-capita water use (Appendix B, Household) was used to estimate waste water flow rate because engineering factors were not available.

> 689 = 0 ther Transp. and Whse. employment (Appendix A) $\frac{x \quad 50}{34450} = Gallons per capita waste water/day (Appendix B)$ $<math>\frac{x \quad 300}{3450} = Days/year$ = 10.335 = Million gallons/year (MGY)

Waste water of 10.335 MGY was multiplied by net medium effluent concentration shown in Table 3 of Section III-A to allocate effluent tonnage. Calculations are presented below.

 Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (1bs) ^b	Conversion (Lbs/gal) ^C	Annual Tonnage
	10 225	30	_	8.34	1.293
BOD	10.335	20	2 470	0.04	_018
Chlorine	10.335	-	3.478	-	
Fecal Coliforn	n 10.335	-	2.800	-	28.938 ^d
Sus. Solids	10.335	30	-	8.34	1.293
Nitrogen	10.335	6	-	8.34	.295
0il & Grease	10.335	15	-	8.34	.647

Other Transportation Water Effluents

a b[20] b[23] cConversion factor d#/ML

Air

The South Carolina study aggregated all transportation into Transport

and Storage. The non-household methodology of Section III-B was used in the following to allocate total emissions to Other Transportation. Total tonnage was found by multiplying the adjusted coefficient (pounds per dollar) by sector output. Some of the tonnage value may seem too low, but any transportation carried out in another sector was counted in the same. Only firms involved with transportation as a business were included in Other Transportation.

<u>Missíssippi</u>	<u>Output</u>	Percent
Water Transportation	\$30,635,000	46
Other Transportation & Warehousing	36,686,000	54

Other Transportation Air Emissions

		Adj. Miss.	
<u>Air Pollutant</u>	Lbs/Dollar	Coefficient	Tonnage
Nitrogen Oxide	.013	.00702	128.768
Sulfur Oxides	-	-	-
Carbon Monoxide	.020	.01080	198.104
Particulates	.019	.01026	188.199
Aldehydes	.033	.00162	29,716
Hydrocarbons	.004	.00216	39.621

Source: [16]

Solid

The average commercial per-capita solid waste factor for urban areas was applied to sector employment to give solid waste tonnage. Total pounds were converted to tons as shown below.

	689	=	Other Transportation employment	(Appendix	A)
х			Pounds/day/employee [42]		•
	316.94	=	Pounds/day		
X	300	=	Days/year		
¥	47.541	=	Tons/year		

COMMUNICATIONS AND PUBLIC UTILITIES

<u>Water</u>

The major source of effluent loadings in the Communications and Public Utilities sector is power generating activity, to which there were two large power generating facilities located in the Mississippi coastal region. As shown below, plant 1 in 1977 generated 67 percent of electricity in the region, receiving about 75 percent of its power from coal. The other 25 percent was via fuel oil and natural gas. Plant 2 supplied 33 percent of total generation using fuel oil exclusively, but has recently converted to coal.

	Kilowatt Hours	Percent Generation
Plant 1	1,000,000	67
Plant 2	500,000	33

Source: Mississippi Power Company

Effluent printouts were available only for plant 1. Plant 2 effluents were estimated by allocating its respective share of total generation as summarized below.

Effluent	Plant 1 (Tons) ^a	Plant 2 Allocation	Total Tonnage
Waste Water ^b	33.708	1.33	44.832
BOD	.014	1.33	.019
Chlorine	.001	1.33	.002
Fecal Coliform ^C	3338.650	1.33	444ú.405
Sus. Solids	5.989	1.33	7.965
Oil and Grease	.128	1.33	.170
Iron	.002	1.33	.003

Communications-Public Utilities Effluents

Copper	.0006	1.33	. 001
a[23] D _{MGY} c#/mL			

The South Carolina study had more sectors in the Communications and Public Utilities category than the corresponding Mississippi sector. However, the only South Carolina sector with air pollution coefficients was the Electric Utilities sector which corresponded exactly to the Mississippi sector. Thus, power generating coefficients were multiplied by Mississippi sector output and converted to tons. Technical data indicated that emissions were too low for sulfur oxides and particulates and revised accordingly [25]. Final results are shown below in tons per year.

Nitrogen Oxide	9.083	Particulates	2500.000
Sulfur Oxides	40000.000	Aldehydes	74,450
Carbon Monoxide	7.445	Hydrocarbons	223.349

Solid

The industrial average solid waste factor for urban areas was used to derive solid waste loadings. The engineering factor was multiplied by sector output as shown below.

> 3002 = Comm. Public Utilities employment (Appendix A) $\frac{x ...65}{1951.3} = Pounds/day/employee [42]$ $\frac{x ...300}{200} = Days/year$ = 292.695 = Tons/year

108

EATING AND DRINKING PLACES

<u>Water</u>

To estimate waste water flow Eating and Drinking Places were divided into full service and fast food categories to utilize available data sources. Restaurant waste water factors were applied to number of seats in estimating full service restaurant waste water. Average gallons per fast food worker was applied to sector employment for fast food waste flow. Full service and fast food waste water flow were summed to yield total sector waste water. The procedure is detailed below, assuming a 360 day year. It is noted that bars and taverns are frequently licensed within eating establishments. Mississippi Tax Commission data suggested an extremely small percentage of separate drinking places; thus, the accuracy of the estimation is not impaired [33].

> 4706 = Eating Drinking employment (Appendix A) x .29 = Fast food proportion [35], [30] = 1365 = Fast food employment

761 = Eating Drinking establishments [33] <u>x</u> .29 = Fast food proportion [35], [30] = 221 = Fast food establishments = 540 = Full service establishments

Fast Food

full Service

 $\frac{1365 = \text{Employment}}{131545 = \text{Gallons/day}} \begin{bmatrix} 37 \\ x \\ 360 \\ - 63.356 \end{bmatrix} = \text{Million gallons/year} \\ \frac{x}{109} = \frac{360}{233.280} = \text{Million gallons/year} \\ \frac{360}{233.280} = \text{Million gallons$

65.356 = MGY Fast food+ 233.280 = MGY Full Service 298.636 = MGY Eating and Drinking

Total waste water flow of 298.636 MGY was applied to net concentration factors listed in Table 3 Section III-A to allocate effluent tonnages. The procedure is summarized below.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversio (lbs/gal)	
BOD	298.636	30	-	8,34	37.359
Chlorine	298.636	-	3.478	-	.519
Fec. Coliform	298.636	-	2.800		836.181 ^d
Sus. Solids	298.636	30	-	8.34	37.359
Nitrogen	298.636	6	-	8.34	7.472
0il & Grease	298.636	15	-	8.34	18.680

Eating and Drinking Places Effluents

а b[20] c[23] Weight of 1 gallon water d#/ML

Air

There were no listed air pollution coefficients for Eating and Drinking places in other studies. Emissions were assumed to be zero.

Solid

Solid waste factors for fast food and full service categories were multiplied by average number of meals and converted to an annual basis. Sector estimation is summarized below, assuming a 360 day year.

Fast Food	Full Service
$221 = Establishments$ $\frac{x 692}{152932} = Meals/day [35]$ $\frac{x 360}{2} = Days/year$ $= 27527.76 = Tons/year$	81000 = Seats (See waste water) $x 1.04 = Turnover/seat [36]*$ $84240 = Meals/day$ $x 2 = Pounds/meal [42]$ $168480 = Pounds/day$ $360 = Days/year$ $= 30326.4 = Tons/year$

110

*Low side estimate of range

Total Eating and Drinking

Fast Food	27527.760 = Tons/year
Full Service	30326.400 = Tons/year
	57854.160 = Tons/year

 $\simeq \cdot$

構造し

SERVICE STATIONS

Water

Waste water flow for the Service Station sector was estimated with the waste water engineering factor of Table 2, Section III-A. The procedure is given below.

285 = Service station establishments [33] $\frac{x \quad 3}{855} = \text{Pumps/station [19]*}$ $\frac{x \quad 400}{342000} = \text{Gallons/pump/day [20]}$ $\frac{x \quad 400}{342000} = \text{Gallons/day}$ $\frac{x \quad 300}{1000} = \text{Days/year}$ = 102.600 = Million gallons/year

*Pump is defined as underground tank servicing gasoline dispensers.

Waste water flow of 102.6 MGY was multiplied by effluent concentrations shown in Table 3, Section III-A to allocate water effluent tonnages. The procedure is summarized below.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversio (lbs/gal)	
BOD Chlorine Fec. Colifor Sus. Solids	102.6	30 30	3.478 2.800 -	8,34 - 8.34	12.836 .179 287.280 ^d 12.836
Nitrogen Oil and Grea	102.6 ase 102.6	6 15	-	8.34 8.34	2.568 6.418

Service Station Effluents

ĥ[20]

[23]

Weight of 1 gallon water

^d#/ML

<u>Air</u>

Private household motor vehicle emissions were entered in the Service Station sector to minimize distortion of linear assumptions between auto emissions and household income [17]. Input-output methodology assumes a proportionate relationship between resource useage and dollar output regardless of output level. However, as household income increases, automobile travel and, consequently, emissions will increase disproportionately. Thus, household pollution was charged to Service Stations because emissions are more linearly related to gasoline sales than to household income. Household emissions are estimated in Appendix B, Households.

Solid

The average commercial solid waste factor was used to estimate Service Station solid wastes. The procedure is summarized below.

 $\frac{1196}{x} = \text{Service Station employment (Appendix A)} \\ \frac{x}{550.16} = \text{Pounds/day/employee [42]} \\ \frac{x}{300} = \text{Days/year} \\ = \frac{82.524}{82.524} = \text{Tons/year}$

WHOLESALE AND RETAIL TRADE

Water

Waste water sewage engineering factors for trade establishments could not be used because store frontage feet were practically unavailable for an area as large as the coastal region. Waste water sewage flow was estimated using average per-capita water use as shown below. Although there are problems with this methodology, no other data were available.

14178 \approx Wholesale and Retail employment (Appendix A)x50= Gallon per-capita water/day (Appendix B)708900 = Gallons/day x_{-} 300x300 = Days/year212.67 = Millions gallons/year (MGY)

Waste water flow of 212.67 MGY was applied to net waste water factors of Table 3, Section III-A to allocate effluent tonnages. This procedure is summarized below.

Effluent	Waste Water	Concentration	Effluent/	Conversion	Annual
	(MGY)	(MG/L) ^a	Gal (lbs) ^b	(1bs/gal) ^C	Tonnage
BOD Chlorine Fec. Colif. Sus. Solids Nitrogen Oil & Grease	212.67 212.67 212.67 212.67 212.67 212.67 212.67	30 - - 30 6 15	3.478 2.800 - -	8.34 - 8.34 8.34 8.34 8.34	26.606 .370 595.476 ^d 26.606 5.321 13.303

materal recail lade clildedc2	Wholesale-Retail	Trade	Effluents
-------------------------------	------------------	-------	-----------

c^[23]

Conversion factor

d#/ML

a b[20]

The South Carolina study did not list air pollution coefficients for Wholesale and Retail Trade. Unpublished engineering data did allow an estimation of incinerator particulates for the Mississippi coastal region totalling 20 tons [25].

<u>Solid</u>

Solid wastes were estimated using engineering factors based upon units of 1000 square feet of interior store space. Total square footage was estimated by dividing gross sales (including cost of goods sold) by average retail/wholesale sales per square foot for typical types of stores. Calculations are summarized below.

Gross Sales

\$203,965,000	Wholesale/retail sales adjusted for cost
	of goods sold, (Appendix A)
x 4.2553	Cost of goods sold multiple [38]
\$867,932,260	Gross sales unadjusted for cost of goods sold
	(4.2553 = 1/.235, where.235 equals margin)

Square Feet

\$79 Sales per square foot, average of stores under \$1 million and over \$1 million [43]

 $\frac{\$867,932,260 \text{ sales}}{\$79} = 10,986,484 \text{ square feet}$ $\frac{10,986,484 \text{ ft}^2}{1000} = 10986.5(1000 \text{ ft}^2)$

Waste Factor

10,986.5 = 1000 ft² x 1.2 = Pounds/1000 ft²/day [42] 13,183.8 = Pounds/day $\frac{X}{100} = Days/year$ = 1,977.57 = Tons/year

FINANCE, INSURANCE, AND REAL ESTATE

Water

Waste water sewage flow for the Finance, Insurance, and Real Estate sector is based upon the number of offices as shown in Table 2, Section III-A. For purposes of estimation it was assumed that on the average there were two employees per office unit.

> 3789 = FIRE employment (Appendix A) $\frac{1}{2}$ = Employees/office = 1895 = Offices $\frac{x}{10}$ = Average waste water/day/office [20] 18950 = Waste water/day x = 300 = Day/year= 5.685 = Million gallons/year (MGY)

Waste water sewage flow of 5.685 MGY was multiplied by net concentrations per effluent to estimate tonnages of water effluents. Estimations are summarized below.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversion (1bs/ga1) ^C	Annual Tonnage
BOD	5.685	30	_	8.34	.711
Chlorine	5. 6 85	-	3.478	0.54	.010
Fec. Colif		-	2.800	-	15.918 ^d
Sus. Solid		30	-	8.34	.713
Nitrogen	5.685	6	-	8.34	.142
0il & Grea	ise5.685	15	-	8.34	. 356

FIRE Effluents

a [20] b [23]

Conversion factor d_{#/ML}

a

<u>Solid</u>

Solid waste consisted mainly of paper waste and was estimated using the average commercial solid waste factor. The procedure is given below.

3789 = FIRE employment (Appendix A) x ...46 = Pounds/day/employee [42] 1742.94 = Pounds/day x ...300 = Days/year = 261.441 = Tons/year

HOTELS, MOTELS, AND LODGING

Water

Waste water flow for Hotels, Motels, and Lodging was estimated using the waste water factor of Table 2, Section III-A. The procedure is given below.

> 4600 = Total rooms, Miss. gulf coast [5] x .59 = Average yearly occupancy [28] = 2739 = Rooms occupied x .75 = Gallons/day/room [20] 205425 = Gallons/day x .300 = Days/year = 61.628 = Million gallons/year (MGY)

Waste flow of 61.628 MGY was multiplied by effluent concentrations shown in Table 3 of Section III-A to allocate effluent tonnage.

k Effluent	laste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversion (lbs/gal) ^C	Annual Tonnage
BOD	61.628	30	-	8.34	7.710
Chlorine	61.628	-	3.478	-	.107
Fec. Colifor	m 61.628	-	2.800	-	172.559
Sus. Solids	61.628	30	-	8.34	7.710
Nitrogen	61.628	6	-	8.34	1.542
0il & Grease	61.628	15	_	8.34	3.855

Hotels, Motels, and Lodging Effluents

a[20] b[23] CConversion factor d#/ML <u>Solid</u>

Solid wastes were derived using the appropriate engineering factor for hotels and motels as shown in Table 4, Section III-C. All classes of lodging places including the medium class were averaged to give 2.2 pounds per room daily.

> 2739 = Rooms [5], [28] <u>x 2.2</u> = Pounds/day/room [42] = 903.87 = Tons/year

MEDICAL SERVICES

Water

Waste water flow for Medical Services was estimated using the average waste water factor of Table 2, Section III-A. The number of beds was based upon a telephone survey of 9 major medical facilities. Using a reported annual occupancy rate of 92 percent, there were approximately 2,062 beds in use on an annual basis. A 365 day year was assumed in the calculations below.

$$2062 = Hospital beds (telephone survey)$$

$$x = 160 = Average gallons/bed/day [20]$$

$$329920 = Gallons/day$$

$$x = 365 = Days/year$$

$$\approx 120.421 = Million gallons/year (MGY)$$

Waste water flow of 120.421 MGY was applied to appropriate effluent concentration factors to allocate effluent tonnages, as shown below.

Was	ste Water	Concentration	Effluent/	Conversion	Annual
Effluent	(MGY)	(MG/L) ^a	Gal (1bs) ^b	(los/gal) ^C	Tonnage
BOD Chlorine Fec. Coliform Sus. Solids Nitrogen Oil & Grease	120.421 120.421 120.421 120.421 120.421 120.421 120.421	30 - 30 6 15	3.478 2.800 - -	8.34 - 8.34 8.34 8.34 8.34	15.065 .210 337.179 ^d 15.065 3.013 7.533

Medical Services Effluents

a^[20] 5^[23] CConversion factor d#/ML <u>Solid</u>

Solid wastes were estimated using the per-bed engineering factor of Table 4, Section III-C, as shown below.

2062 = Beds (telephone survey) $\frac{x \quad 8}{16496} = Pounds/bed/day [42]$ $\frac{x \quad 365}{2} = Day/year$ $\approx 3010.520 = Tons/year$

EDUCATIONAL SERVICES

<u>Water</u>

Waste water flow was estimated with a per-pupil factor as shown in Table 2 of Section III-A. Estimated number of students in the coastal region based upon average daily attendance is given in the table below.

<u>School or District</u>	Average Daily Attendance		
Hancock	1751		
Bay St. Louis	1811		
Harrison Co.	9230		
Biloxi	6981		
Gulfport	6774		
Long Beach	3307		
Pass Christian	1375		
Jackson Co.	6276		
Moss Point	6482		
Ocean Springs	4009		
Pascagoula	8291		
County Total	56287		

Number of Students

Source: [45]

Average daily attendance of 56,287 was multiplied by the average engineering factor, assuming a 220 day year. That is, the academic year was assumed to be a nine month session plus two months of summer school (20 days per month). The inclusion of all students in the summer term helped to account for some college and junior college attendance not covered in the table.

$$56287 = Average daily attendance [45]
x 14 = Gallons/pupil/day [20]
788018 = Gallons/day
x 220 = Days/year
173.364 = Million gallons/year (MGY)$$

Waste water flow of 173.364 MGY was then applied to the effluent concentration listed in Table 3, Section III-A.

Educational Services Effluents

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversion (lbs/gal) ^C	Annua] Tonnage
вор	173.364	30	_	8.34	21.089
Chlorine	173.364	-	3.478	+	.302 485.419 ^d
Fec. Coliforn	n 173.364	-	2.800	-	485.419 ^a
Sus. Solids	173.364	30	-	8.34	21.689
Nitrogen	173.364	6	-	8.34	4.317
0il & Grease	173.364	15	-	8.34	10.844

a_[20] b_[23] cConversion factor d#/ML

Solid

The per-pupil solid waste factor of Table 4, Section III-C was applied to number of students to estimate solid waste tonnage.

56287 = Average daily attendance [45] x = 2.1 = Pounds/pupil/day [42] 118202.7 = Pounds/day x = 220 = Days/year = 13002.297 = Tons/year

OTHER SERVICES

Water

Waste water flow for Other Services required residual allocation because the heterogeneity of services and the data required thereof caused the use of waste water engineering factors to be impractical. The approach taken was to subtract water flows of all other commercial sectors from the total commercial water magnitude discussed in Section III-A. This procedure is given below.

Number Sector <u>Waste Water (MGY)</u> 18 Water transportation 17.500 19 Other transportation 10.335 21 Eating-drinking 298.636 22 Service station 102.600 23 Wholesale-retail 212.670 24 FIRE 5.685 25 Hotels-motels 61.628 26 Medical services 120.421 Educational services 27 173.364 29 State-local gov't 29.910 Total Water Flow 1032.760

Commercial Sector Waste Water Except Other Services

Source: [20],[23]

4417.895 Commercial flow, sectors 18-19, 20-29 (Section III-A) - 1032.760 Non-Other Svc. flow, sectors 18-19, 20-27,29 = 3385.135 Other Services flow, sector 28 (MGY)

Waste water flow of 3385.135 MGY was multiplied by appropriate concentration factors to allocate effluent tonnages as shown in the

following. Although total waste water loadings by the Other Services sector may appear high, this sector includes many diverse, water-consuming businesses such as laundromats and swimming pools.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (lbs) ^b	Conversion (1bs/gal)	
BOD	3385,135	30	_	8.34	423,480
Chlorine	3385.135	_	3.478	+	5.887,
Fec. Coliform	3385.135	-	2.800	-	9478.378 ^d
Sus. Solids	3385.135	30	-	8.34	423.480
Nitrogen	3385.135	6	-	8.34	84.696
Oil and Grease	3385.135	15		8,34	211.740

Other Services Effluents

a_[20] b_[23] c Conversion factor d#/ML

<u>Solid</u>

and the second strategy and the second s

.

AND THE REPORT

<u>.</u>

The commercial average solid waste engineering factor for urban areas shown in Table 5 of Section III-C was used to estimate sectoral solid waste tonnage, as shown below.

> 13156 = Other Services employment (Appendix A) $\frac{x \quad .46}{6051.76}$ = Pounds/emp/day [42] $\frac{x \quad .300}{200}$ = Days/year = 907.764 = Tons/year

STATE AND LOCAL GOVERNMENT

Water

Waste water flow was estimated using the average office factor shown in Table 2 of Section III-A. For government, one person per office was assumed.

> 9970 = State-Local Gov't employment (Appendix A) x = 10 = Average gallons/emp/day [20] 99700 = Gallons/day x = 300 = Days/year = 29.91 = Million gallons/year (MGY)

Waste water flow of 29.91 MGY was multiplied by the appropriate effluent concentration factors shown in Table 3 of Section III-A to allocate effluent tonnages.

Effluent	Waste Water (MGY)	Concentration (MG/L) ^a	Effluent/ Gal (1bs) ^D	Conversion (lbs/gal) ^C	Annual Tonnage
BOD	29.91	30	-	8.34	3.742
Chlorine	29.91	-	3.478		.053
Fec. Coliform	29.91	-	2.800	-	83.748d
Sus. Solids	29.91	30	-	8.34	3.742
Nitrogen	29.91	6	-	8.34	.749
Oil and Grease	29.91	15	-	8.34	1.841

State-Local Government Effluents

a [20] [23] ^C Conversion factor d#/ML <u>Solid</u>

i.

The commercial average solid waste factor for urban areas was applied to sector employment to yield total solid waste, as shown below.

9970 = State Local Gov't employment (Appendix A) x .46 = Pounds/emp/day [42] 4586.2 = Pounds/day $\frac{x \quad 300}{= \quad 687.93} = \text{Tons/year}$

HOUSEHOLDS

<u>Water</u>

Household waste water flow of 5205.740 MGY was estimated by applying 1977 population to average per-capita waste water loadings. The following procedure gives an approximation of average residential waste water, assuming that 20 percent of total use is consumed or recycled [25]. Per-capita waste water use is based upon the average of these separate studies.

Mississippi Coastal Region Population

County	1975 Population ^a	1980 Population ^b
Hancock	18,100	21, 442
Harrison	146,800	148,247
Jackson	105,800	137,376
Total	270,700	307,065

a[49] b[26]

Estimated 1977 Population

36365 = Population change, 1975-1980 $\frac{\div}{5} = Years$ = 7273 = Change/year $\frac{x}{2} = Years$ $\frac{2}{7} = 14546 = Change, 2 years$ $\frac{+ 270700}{7} = Population, 1975$ = 285246 = Estimated population, 1977

Study	Total Use Gallons/Day
Bailey Study, [1] Reid Study, [40]	255 246 260
<u>Geological Survey [11]</u> Average family (4 per family) Average per-capita	254 64

Average Per-Capita Waste Water Use

64 = Gallons/person/day [1], [11], [40] x .8 = Waste water proportion [25] = 50 = Gallons/person/day/waste water x 285246 = Population Mississippi coastal region[49],[26] = 14262300 = Gallons/day/waste water $\frac{x 365}{= 5205.740} = Days/year$ = Million gallons/year (MGY)

As discussed in Section III-A, we now have waste water flow for households and need to estimate effluent tonnages. The sum of commercial effluent allocations was subtracted from its combined commercial and household loadings. Total commercial and household effluent tonmages were found by adding printout and non-printout treatment facility effluent loadings. This procedure is summarized below.

Household Effluent Tonnages

Effluent	MAWPCC Facility	Allocated	Household
	Total (Tons/year)	Commercial(Tons/yr) ^a	Effluent (Tons/yr)
BOD Chlorine Fec. Coliform Sus. Solids Nitrogen Oil and Grease	1226.839 16.755 26787.084 5929.190 248.748	561.919 7.812 12370.076 561.919 112.365 280.997	664.920 8.943 14417.008 ^b 5367.271 136.383 320.961

a^[23], [20] b[#]/ML

<u>Air</u>

ż

ţ

Using the methodology of Section III-B the correction factors for air emissions in Equation 2 were derived to regionalize the mean emission factors in order to estimate private vehicle pollution in tons. The

(1)	(2)	(3)	(4)	(5)	(6)
Year	No. Vehicles ^a	Percent of Total ^b	Average Annual <u>Miles Driven^c</u>	<u>(3) x (4)</u>	Min
1977	7,176,880	.072	15,900	1,145	.104
1976	9,557,278	.096	15,000	1,440	.131
1975	7,477,202	.075	14,000	1,050	.095
1974	9,594,193	.096	13,100	1,258	.114
1973	10,854,200	. 109	12,200	1,330	.121
1972	9,562,731	.096	11,300	1,085	.098
1971	7,865,782	.079	10,300	814	.074
1970	7,449,104	.075	9,400	705	.064
Pre-1970	30,366,224	.304	7,240 ^d	2,201	.199
Total	99,903,594	1.002	-	11,028	1.000

fraction of annual travel by vehicle model year is given below.

Fraction of Vehicle Travel by Model Year, \textit{M}_{in} (1977 Annual Data)

a[41] bTotal does not sum to 1.0 because of rounding c[45] dAverage of last 5 years of Strate data

- - .

Speed correction factors (Vips) were computed with information from the following table taken from EPA projected emissions inventory [51]. Computations were divided among pre-1970, 1970, and post-1970. Pre-1970 is composed of the simple average of 1957-1967, 1968, and 1969. Average speed

		L		v _{ips} = e ⁽	A + 85 +			Vip	• A + BS
Location	Model		Hydrocarbo		<u> </u>	Carbon mono	» ide	Niti	ogen oxides
Lucation	year	<u> </u>		¢	A	В	C C	A	В
Low altitude (Excluding 1966 1967 Calit.)	1957 1 967	0.953	-6.00 x 10 ⁻²	5.81 x 10 ·*	0.967	-6.07 x 10 ⁻²	5.78 x 10 4	0.808	0.980 x 10
California Low altitude	1966-1967 1968 1969 1970 Post-1970	0.957 1.070 1.005 0.901 0.943	-5.98 x 10 ² -6.63 x 10 ² -5.27 x 10 ² -5.70 x 10 ² -5.92 x 10 ²	5 98 x 10 4 5.80 x 10 4 5 59 x 10 4	D 981 1 047 1.259 1.267 1.241	-6 22 x 10 2 -6.52 x 10 2 -7.72 x 10 7 -7.72 x 10 7 -7.72 x 10 7 -7.52 x 10 7	6 19 x 10 4 6 01 x 10 4 6 60 x 10 4 6 40 x 10 4	0 844 0.888 0 915 0 843	0 798 x 10 0 569 x 10 0.432 x 10 0 798 x 10
Hgh altitude	1957-1967 1968 1969 1970 Post-1970	0 883 0 722 0.706 0.840 0 787	-5.58 x 10 2 -4.63 x 10-2 -4.55 x 10-2 -5.33 x 10 2 -4.99 x 10 7	552 x 10 4 480 x 10 4 484 x 10 4 5.33 x 10 4	0 721 0 662 0.628 0 835	-7 52 x 10 4 -4 57 x 10 2 -4 23 x 10 2 -4.04 x 10 2 -5.24 x 10 2 5 54 x 10 2	6 09 x 10 4 4 56 x 10 4 4 33 x 10 4 4 26 x 10 4 4 98 x 10 4 4 99 x 10 4	0.643 0.602 0.642 0.726 0.614 0.697	0 804 x 10 2 027 x 10 1 835 x 10 1 403 x 10 1 978 x 10 1 553 x 10

COE FFICIENTS FOR SPEED CORRECTION FACTORS FOR LIGHT DUTY VEHICLES

(S) is assumed to approximate the national average of 45 miles per hour and includes both highway and city travel. The Mississippi coastal region falls into the category of low altitude, non-California.

S = average speed
A, B, and C from table

Pre-1970

[]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V _{ips} = e ^{[1.009} + (063)(45) + .000586(45) ²]
V _{ips} = .53
<u>1970</u> V _{ips} = e[.90] + (057)(45) + .000559(45) ²]
V _{ips} = .59
<u>Post-1970</u> V _{ips} = e[.943 + (0592)(45) + .000567(45) ²]
V _{ips} = .56 (2) Carbon Monoxide: V _{ips} = e ^(A + BS +CS²) where:
S = Average speed A,B, and C from table
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$V_{ips} = e^{[1.091 + (-.0677)(45) + .000613(45)^{2}]}$$

$$V_{ips} = .49$$

$$\frac{1970}{V_{ips}} = e^{[1.267 + (-.0772)(45) + .000640(45)^{2}]}$$

$$V_{ips} = .40$$

$$Post-1970$$

$$V_{ips} = e^{[1.241 + (-.0752)(45) + .000609(45)^2]}$$

 $V_{ips} = .40$

(3) Nitrogen Oxides: V_{ips} = A + BS

where:

S = Average speed A and B from table

<u> Pre-1970</u>

_	.808				10-2
A =	. 888	B =	.569	х	10^{-2}
	.915		.432	х	10 ⁻²
	.870		.660	х	10-2

V_{ips} = .87 + (.0066)(45) V_{ips} = 1.167

<u>1970</u>

V_{ips} ≈ .843 + (.00798)(45) V_{ips} ≈ 1.202

<u>Post-1970</u>

V_{ips} = .843 + (.00804)(45) V_{ips} = 1.205 Temperature correction factors (Z_{ipt}) are presented in the following table where t equals ambient coastal temperature. The final columns will be used later to determine the hot/cold operation factor (R_{iptw}) . The average ambient temperature for the Mississippi coastal region for 1977 was 67° Farenheit [34]. This temperature falls within the EPA temperature band $(20^{\circ}-80^{\circ})$ governing the temperature correction factors listed in the table. Computations were based upon two basic engine types: catalytic and non-catalytic. For purposes of estimation it was assumed that catalytic convertors were common to vehicles only after 1975 [50]. Non-catalyst factors were applied to pre-1975 model years.

Light-Duty Vehicle Temperature Correction Factors And Hot/Cold Vehicle Operation Correction Factors For FTP Emission Factors

Pollutant Temperature Cor-		Hot/Cold Vehicle Operation correction factors		
and Controls	<pre>rection factor(Z_{ipt})</pre>	<u>q(t)</u>	<u> </u>	
Carbon Monoxide Non-Catalyst Catalyst	-0.0127t + 1.95 -0.0743t + 6.58	U.035t - 5.24	0.0045t + 0.02 0.036t - 4.14	
Hydrocarbons				
Non-Catalyst Catalyst	-0.0113t + 1.81 -0.0304t + 3.25	0.0018t + 0.0095	0.0079t + 0.03 0.0050t - 0.0409	
Nitrogen Oxides Non-Catalyst Catalyst	-0.0046t + 1.36 -0.0060t + 1.52	- -0.0010t + 0.858	-0.0068t + 1.64 0.0010t + 0.835	

Source: [51]

(1) Carbon Monoxide:

Catalyst
$$Z_{ipt} = -.0743(67) + 6.58$$

 $Z_{ipt} = 1.689$
Non-Catalyst $Z_{ipt} = -.0127(67) + 1.95$
 $Z_{ipt} = 1.0991$

(2) Hydrocarbons:

Catalyst
$$Z_{ipt} = -.0304(67) + 3.25$$

 $Z_{ipt} = 1.2132$
Non-Catalyst $Z_{ipt} = -.0113(67) + 1.81$
 $Z_{ipt} = 1.0529$

(3) Nitrogen Oxides:

Catalyst
$$Z_{ipt} = -.0060(67) + 1.52$$

 $Z_{ipt} = 1.118$
Non-Catalyst $Z_{ipt} = -.0046(67) + 1.36$
 $Z_{ipt} = 1.0518$

The hot/cold vehicle operation correction factor (R_{iptw}) adjusts vehicle emissions during three phases of typical engine use: (1) a cold transient phase (start-up after long engine-off period), (2) a hot transient phase (start-up after short engine-off period), and (3) a stabilized phase (warmed-up operation)[50]. The following two formulas specify emission corrections based upon the assumption of national averages that 20, 27, and 53 percent of all vehicles operate in cold, hot transient, and stabilized phases, respectively, for automobiles with catalytic converters after 1975. For non-catalytic pre-1975 vehicles the hot-transient phase is combined with stabilized phase to yield 20 percent cold operation and 80 percent hot operation. The formulas for both categories are given below. The terms f(t) and g(t) were derived from Columns (2) and (3) of the previous table of temperature correction factors.

Pre-1975, Non-Catalyst Vehicles

$$R_{iptw} = \frac{w + (100 - w) f(t)}{20 + 80 f(t)}$$

where:

w = Percentage of cold operation f(t) = Computed from previous table

Post-1975, Catalytic Vehicles

$$R_{iptw} = \frac{w + f(t) + (100 - w - x) g(t)}{20 + 27 f(t) + 53 g(t)}$$

where:

Construction of the second sec

: i x = Percentage of hot start-up

g(t) = Computed from previous table

The above functions are based upon national average conditions as specified earlier. If the study area is exactly the same, the correction factor reduces to one and has no effect upon air emissions. This, of course, would be a naive assumption. An EPA study shows that the higher the proportion of urban population, the more likely are vehicles to increase cold operation during afternoon rush when work-to-home trips are at a peak and vehicles have been standing idle for 8 hours[50]. Using this principle, cold operation for the Mississippi coastal region was adjusted by multiplying the national average cold operation factor times the ratio of regional to national urban population proportion, as shown below.

<u>Regional Urban Proportion</u> x National Cold Operation

Catalyst (Post-1975)

 $\frac{.77}{.735}$ x .47 = .49

where: .47 = .27 + .20

Source: [47]

Non-Catalyst (Pre-1975)

The adjusted hot/cold proportions for catalytic and non-catalytic vehicles are given below.

135

Catalytic Adjusted

Cold (w)	21%
Cold (w) Hot Start-up (x)	28%
Hot Stabilized	51%

Non-Catalytic Adjusted

Cold	(w)	21%
	Hot	79%

Using the adjusted hot/cold proportions in the correction factor formulas (R_{iptw}) , the hot/cold temperature correction factors for air emissions were computed as shown below.

(1) Carbon Monoxide:

Pre-1975

$$R_{iptw} = \frac{20+(100-21)(.3215)}{20+80(.3215)} = .995$$

Post-1975

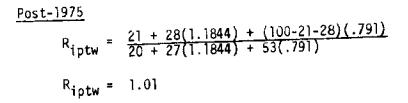
$$R_{iptw} = \frac{21 + 28(.3215) + (100-21-28)(-2.895)}{20 + 27(.3215) + 53(-2.895)}$$

$$R_{iptw} = .94$$

(2) Hydrocarbons:

 $\frac{\text{Pre-1975}}{\text{R}_{\text{iptw}}} = \frac{20 + (100 - 21)(.5593)}{20 + 80(.5593)} = .99$

Post-1975


$$R_{iptw} = \frac{21 + 28(.5593) + (100 - 21 - 28)(.1301)}{20 + 27(.5593) + 53(.1301)}$$

$$R_{iptw} = 1.03$$

(3) Nitrogen Oxides:

Pre-1975

$$R_{iptw} = \frac{21 + (100 - 21)(1.1844)}{20 + 80(1.1844)} = .99$$

At this point we have derived the following correction factors of Equation 5, Section III-B: M, V, Z, and R. The uncorrected mean emissions factor in grams per mile (C_{ipn}) for each pollutant is given in the table below.

Carbon Monoxide, Hydrocarbon, and Nitrogen Oxides Exhaust Emission Factors For Light-Duty, Gasoline-Powered Vehicles Excluding California-For Calendar Year 1977 (Based on 1975 Federal Test Procedure)

	Carbon		Hydrocarbons		Nitrogen oxides	
Location and model year	<u>Monoxide</u> g/mi	q/km	g/mi	q/km	g/mi	g/km
Low Altitude Pre-1968 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	98.0 79.6 77.4 66.0 63.5 47.0 45.0 43.0 10.8 9.9 9.0	60.9 49.4 48.1 41.0 39.4 29.2 27.9 26.7 6.7 6.1 5.6	9.2 9.2 7.3 7.3 5.9 4.7 4.4 4.1 1.4 1.2 1.0	5.7 5.7 4.5 4.5 3.7 2.9 2.7 2.5 0.9 0.7 0.6	3.34 4.32 5.08 4.35 4.30 4.55 3.9 3.7 3.3 3.2 2.0	2.07 2.68 3.15 2.70 2.67 2.83 2.4 2.3 2.0 2.0 1.2

Source: [51]

The mean emissions factors (C) were multiplied by appropriate correction factors thus derived in order to regionalize the estimation of air emissions tonnages. The sum of the composite emissions factors (Enstw(x)) in coastal regions for all years yields total emissions in grams per mile. The procedure is applied to carbon monoxide, hydrocarbons, and nitrogen oxides in the next three tables. Emissions of particulates and sulfur oxides do not require correction and are computed in the final table.

137

Model Year	Cin	Min	V _{is}	Z _{it}	<u> </u>	Enstw(x)
1977 1976 1975 1974 1973 1972 1971 1970 Pre-1970 Composite En	9.0 9.9 10.8 43.0 45.0 47.0 63.5 66.0 85.0	.104 .131 .095 .114 .121 .098 .074 .064 .199	.4 .4 .4 .4 .4 .4 .4 .4	1.69 1.69 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	.94 .94 .95 .995 .995 .995 .995 .995 .99	.60 .82 .65 2.15 2.38 2.02 2.06 1.85 9.07

Carbon Monoxide

Source: [51]

Hydrocarbons

1977 1.0 .104 .56 1.21 1.03 .0 1976 1.2 .131 .56 1.21 1.03 .1 1975 1.4 .095 .56 1.21 1.03 .0 1974 4.1 .114 .56 1.05 .99 .2 1973 4.4 .121 .56 1.05 .99 .2 1972 4.7 .098 .56 1.05 .99 .2 1971 5.9 .074 .56 1.05 .99 .2 1970 7.3 .064 .59 1.05 .79 .2 Pre-1970 8.6 .100 .50 .79 .2	Model Year	Cin	Min	Vis	Zit	Ritw(x)	Enstw(x)
	1976 1975 1974 1973 1972 1971	1.2 1.4 4.1 4.4 5.9 7.3	.131 .095 .114 .121 .098 .074 .064	.56 .56 .56 .56 .56 .56 .56 .59	1.21 1.21 1.05 1.05 1.05 1.05 1.05	1.03 1.03 1.03 .99 .99 .99 .99	.07 .11 .09 .27 .31 .27 .25 .29 .94

Source: [51]

Nitrogen Oxides

Model Year	Cin	Min	Vis	Zit		Enstw(x
1977 1976 1975 1974 973 972 971 970 1970	2.0 3.2 3.3 3.7 3.9 4.55 4.3 4.35 4.25	.104 .131 .095 .114 .121 .098 .074 .064 .199	1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.202 1.167	1.12 1.12 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1.01 1.01 1.01 .99 .99 .99 .99 .99 .99	.28 .57 .43 .53 .59 .56 .40 .35 1.03
re-1970 Composite Em				٦. 	05	+

Source: [51]

Total miles traveled in 1977 by privately-owned passenger vehicles are given below. Total miles traveled were then multiplied by composite emissions factors (E) in grams per mile to yield total grams of air emissions. This procedure is summarized in the final table. Total grams were converted to tons to complete the estimation of household air emissions. Particulates and sulfur oxides did not require regional correction and were estimated directly from their composite emission factors. As explained earlier, household air pollution was entered in the Service Station sector because of the more linear relationship between gasoline sales and automobile usage.

Model Year	Proportion of Total Annual Travel ^a	Total Passenger Vehicles, MS Coastal Region 1977 ^b	Avg. Annual mi. Traveled/ veh/model yr ^C	Miles Traveled 1977
1977	. 104	14,859	15,900	236,258,100
1976	.131	18,715	15,000	280,725,000
1975	.095	13,573	14,000	190,022,000
1974	.114	16,288	13,100	213,372,800
1973	.121	17,288	12,000	207,456,000
1972	.098	14,002	11,300	158,222,600
1971	.074	10,573	10,300	106,901,900
1970	.064	9,144	9,400	85,953,600
Pre-197	0.199	28,432	7,240	205,847,680
Total	1.000	142,874		1,686,759,080

Total Miles Traveled Registered Private Vehicles Mississippi Coastal Region 1977

^a[41], [45] ^b[**3**2], [31] ^c[46], [51]

Household Sector Air Pollution Mississippi Coastal Region, 1977

Air	Composite Emissions					
Pollutant	Grams/Mile ^a Total Miles Total Grams Total Tonna					
Carbon Monoxide Hydrocarbons Nitrogen Oxides Particulates ^C Sulfur Oxides ^C	21.60 2.60 4.74 .60 .23	1,686,759,680 " " "	36,434,009,088 4,385,575,168 7,995,240,883 1,012,055,808 387,954,726	40,160.945 4,834.188 8,813.096 1,115.582 427.640		

^a[51], See previous discussion

 b_1 Ton $\simeq 907,200$ grams

^CNo regional correction required

<u>Solid</u>

The solid waste factor for urban areas with a population density of 10-200 persons per square mile was applied to estimated 1977 Mississippi coastal population to give solid waste tonnage. The upper limit of the range for the waste factor was used since population density approached 200 per square mile [34]. A 365 day year is assumed.

285246 = Population (See Households, Water) $\frac{x \quad 3.1}{=} Pounds/day/person [42]$ = 884262.6 = Pounds/day $\frac{x \quad 365}{=} Days/year$ = 161377.920 = Tons/year

BIBLIOGRAPHY

BIBLIOGRAPHY

- Bailey, J. R., Benoit, R. J., Dodson, J. L., Robb, J. M. and Wallman, H. <u>A Study of Flow Reduction and Treatment of Waste</u> <u>Water from Households.</u> Water Pollution Control Research Series, 11050 FKE, Advanced Waste Treatment Research Laboratory, Cincinnati, Ohio, December 1969.
- Bell, Frederick W. <u>Benefits From Water Pollution Abatement Coastal Waters</u>. Report No. NCWQ 75/88-Vols. 1-2. Florida State University. Department of Economics. April, 1976.
- 3. Benarde, Melvin A. <u>Our Precarious Habitat</u>. New York: W. W. Norton and Company, 1970.
- Blaylock, James E. and Jones, Lonnie L. <u>An Analysis of Economic-</u> <u>Environmental Interrelations on the Lower Rio Grande Region of</u> <u>Texas</u>. Texas Agricultural Experiment Station. Texas A & M University. July, 1973.
- 5. Cartee, Charles P., Williams, D. C., and Murray, Nell O. <u>A Historial</u> and Projected Analysis of Travel and Tourism in the Mississippi Gulf Planning Region.
- Carter, A. P. and Brody, A., eds. <u>Applications of Input-Output Analysis</u>. Amsterdam, Holland: North-Holland Publishing Co., 1970.
- Carter, Clare E., Fink, Linda L., Teaf, Christopher M., and Herndon, Roy C. <u>Hazardous Waste Survey for the State of Florida</u>. Florida Resources and Environmental Analysis Center. Florida State University. October, 1977.
- 8. Compton Consulting Engineers. Pascagoula, MS, 1977.
- 9. Department of Ecology. <u>A Report on Industrial and Hazardous Wastes</u>. State of Washington, 1974.
- 10. Dolan, Edwin G. <u>TANSTAAFL</u>, The Economic Strategy for Environmental <u>Crisis</u>. New York: Holt, Rinehart and Winston, Inc., 1971.
- 11. Dorfer, C. N. and Becker, E. <u>Public Water Supplies at the 100 Largest</u> <u>Cities in the United States, 1962</u>. U. S. Geological Survey, Water Supply Paper 1812, U.S. Government Printing Office, Washington, D. C., 1964.

- 12. Feld, Sidney, and Renholm, Niels. <u>Economic Growth and Generation of</u> <u>Waterborne Wastes</u>. University of Rhode Island. Marine Technical Report No. 12, 1973.
- 13. Hamilton Standard Division of United Aircraft Corp. <u>Development</u> <u>Document for Effluent Limitations, Guidelines, and Standards</u> <u>of Performance: Feedlot Industry</u>. Draft prepared for Environmental Protection Agency. June, 1973.
- 14. Issard, Walter. <u>Ecologic-Economic Analysis for Regional Development</u>. New York: The Free Press, 1972.
- Issard, Walter, and Langford, Thomas W. Regional Input-Output Study. Cambridge, Mass.: The MIT Press, 1960.
- 16. Johnson, Manuel H., Jr. <u>An Assessment of the Impact of Nuclear-Power Plant Construction and Operation on Small Regions</u>. Unpublished Doctoral Dissertation. Tallahassee, Florida. Florida State University, 1977.
- 17. Laurent, Eugene A., and Hite, James C. <u>Economic-Ecologic Analysis</u> <u>in the Charleston Metropolitan Region: An Input-Output Study</u>. <u>Report No. 19, Water Resources Research Institute, Clemson</u> University, 1971.
- 18. Leontief, Wassily. <u>Input-Output Economics</u>. New York: Oxford University Press, 1966.
- 19. Lundberg Survey, Inc. Petroleum Marketing Statistical Service. North Hollywood, California, 1977.
- Metcalf and Eddy, Inc. Wastewater Engineering. New York: McGraw-Hill, Inc., 1972.
- Micro-Methods Analytical and Engineering Service Co. Pascagoula, Mississippi, 1978.
- Mills, Edwin S. <u>The Economics of Environmental Quality</u>. New York: W. W. Norton and Co., 1978.
- 23. Mississippi Air and Water Pollution Control Commission. <u>NPDES Self</u> <u>Monitoring System Data Summary Report</u>. Unpublished Computer Printout. Jackson, Mississippi: March, 1978.
- 24. Mississippi Air and Water Pollution Control Commission. "Statistics: Functional Operation and Maintenance Status for Existing Wastewater Facilities for the Mississippi Gulf Coast Area." Jackson, Mississippi, 1977.
- 25. Mississippi Air and Water Pollution Control Commission. Unpublished Engineering Factors and Data for the Mississippi Coastal Zone. Jackson, Mississippi, 1977.
- 26. Mississippi Agricultural and Forestry Experiment Station, <u>Mississippi</u> <u>Population by County, Age, Sex, and Color: 1960, 1970 and Pro-</u> <u>jections to 1980</u>. Bulletin 815. Mississippi State University. March, 1975.

- 7.

- Mississippi Employment Security Commission. Research and Statistics Department. <u>Benchmarks: 1970-1977</u>. Jackson, Mississippi. April, 1978.
- 28. Mississippi Gulf Coast Innkeepers Association. Biloxi, MS, 1977.
- 29. Mississippi Research and Development Center. <u>Mississippi Manufacturers</u> <u>Directory, 1978</u>. Jackson, Mississippi, 1977.
- 30. Mississippi Restaurant Association. Statistical Division. Jackson, Mississippi, 1979.
- Mississippi State Highway Department. <u>Mississippi County Traffic Maps,</u> <u>1976 ADT</u>. Transportation Planning Division. Jackson, Mississippi. November, 1976.
- 32. Mississippi State Motor Vehicle Comptroller's Office. "County Posting Sheet." Jackson, Mississippi, 1977.
- 33. Mississippi State Tax Commission. <u>Sales Indicated by Sales Tax</u> <u>Collections During Fiscal Year, 1977 County by Industry by Rate</u> FY 1977. Computer Printout. Jackson, Mississippi. January 1977.
- <u>Mississippi Statistical Abstract 1977</u>. Division of Research, College of Business and Industry. Mississippi State University, 1977.
- 35. National Restaurant Association. "RAB Instant Background: Drive-In and Fast Food." Profiles of Leading Categories of Business. Chicago, Illinois, 1976.
- 36. National Restaurant Association. <u>Tableservice Restaurant Operations</u> <u>Report '77</u>. Second Annual Report for the United States. Chicago, Illinois, 1977.
- 37. <u>Nation's Restaurant News</u>. "Water Weapon in Fast Food Zoning Fight." May 1, 1978, p. 114.
- 38. Nissan, Edward, Daniel, Donnie L., Williams, D. C., and Green, Trellis G. <u>Linkages Between the Economy and the Environment of the</u> <u>Coastal Zone of Mississippi, Part 1: Input-Output Model</u>. Bureau of Business Research. University of Southern Mississippi. March, 1978.
- Office of the Director. Mississippi Research and Development Center. Regional Office. Gulfport, Mississippi, 1978.
- 40. Reid, G. A. "Protection of Future Municipal Water Requirements." Southwest Water Works, S. 46:18, 1965.
- 41. R. L. Polk and Co. Motor Statistical Division. Detroit, Michigan, 1977.
- 42. Salvato, Jr., Joseph A. <u>Environmental Engineering and Sanitation</u>. 2nd. Edition. New York: John Wiley & Sons, Inc., 1972.

- Scher, Jay, Ed. <u>Department of Specialty Store Merchandizing and</u> <u>Operating Results of 1975</u>. New York: National Retail Merchant's Association Financial Executives Division, 1976.
- 44. Soil Conservation Society of America. "A Primer on Agricultural Pollution." <u>Journal of Soil and Water Conservation</u>. Vol. 26, No. 2 (March-April, 1971), pp. 44-65.
- 45. State Superintendent of Public Education, Mississippi Department of Education. <u>Annual Report and Recommendations of the State</u> <u>Superintendent of Public Education</u>. Jackson, Mississippi, 1975.
- 46. Strate, H. E. <u>Nationwide Personal Transportation Study-Annual Miles</u> <u>of Automobile Travel</u>. Report Number 2. U.S. Department of Transportation. Federal Highway Administration. Washington, D. C. April, 1972.
- 47. U. S. Bureau of the Census, Department of Commerce. <u>Statistical</u> <u>Abstract of the United States: 1977</u>. 98th Edition. Washington, D. C.: Government Printing Office, 1977.
- 48. U. S. Department of Agriculture. <u>Census of Agriculture</u>, 1974. Vol. I. Part 24. State and County Data. Washington, D. C.: Government Printing Office, 1974.
- 49. U. S. Department of Commerce. Bureau of the Census. <u>Population</u> <u>Estimates. Estimates of the Population of Mississippi Counties</u> <u>and Metropolitan Areas: July 1, 1974 and 1975</u>. Series P-26, No. 75-24. Washinton, D. C.: Government Printing Office. October, 1976.
- 50. U. S. Environmental Protection Agency, Office of Air and Waste Management, Office of Air Quality Planning and Standards. <u>Compilation of Air Pollutant Emission Factors</u>. Publication <u>AP-42</u>, Part A. Second Edition. Research Triangle Park, North Carolina, 1976.
- 51. U. S. Environmental Protection Agency, Office of Air and Waste Management, Office of Air Quality Planning and Standards. <u>Compilation of Air Pollutant Emission Factors</u>. Publication AP-42, Part B. Third Edition. Research Triangle Park, North Carolina, 1976.
- 52. Victor, Peter. <u>Pollution: Economy and Environment</u>. London: George Allen and Unwin, Ltd., 1972.
- 53. Zwick, David, and Benstock, Marcy. <u>Water Wasteland</u>. New York: Bantam Books, 1972.